Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 42(2): 201-8, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15125150

ABSTRACT

A method for the identification of the breast boundary in mammograms is presented. The method can be used in the preprocessing stage of a system for computer-aided diagnosis (CAD) of breast cancer and also in the reduction of image file size in picture archiving and communication system applications. The method started with modification of the contrast of the original image. A binarisation procedure was then applied to the image, and the chain-code algorithm was used to find an approximate breast contour. Finally, the identification of the true breast boundary was performed by using the approximate contour as the input to an active contour model algorithm specially tailored for this purpose. After demarcation of the breast boundary, all artifacts outside the breast region were eliminated. The method was applied to 84 medio-lateral oblique mammograms from the Mini-MIAS database. Evaluation of the detected breast boundary was performed based upon the percentage of false-positive and false-negative pixels determined by a quantitative comparison between the contours identified by a radiologist and those identified by the proposed method. The average false positive and false negative rates were 0.41% and 0.58%, respectively. The two radiologists who evaluated the results considered the segmentation results to be acceptable for CAD purposes.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Female , Humans , Models, Anatomic , Radiology Information Systems
2.
IEEE Trans Med Imaging ; 23(2): 232-45, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14964567

ABSTRACT

The pectoral muscle represents a predominant density region in most medio-lateral oblique (MLO) views of mammograms; its inclusion can affect the results of intensity-based image processing methods or bias procedures in the detection of breast cancer. Local analysis of the pectoral muscle may be used to identify the presence of abnormal axillary lymph nodes, which may be the only manifestation of occult breast carcinoma. We propose a new method for the identification of the pectoral muscle in MLO mammograms based upon a multiresolution technique using Gabor wavelets. This new method overcomes the limitation of the straight-line representation considered in our initial investigation using the Hough transform. The method starts by convolving a group of Gabor filters, specially designed for enhancing the pectoral muscle edge, with the region of interest containing the pectoral muscle. After computing the magnitude and phase images using a vector-summation procedure, the magnitude value of each pixel is propagated in the direction of the phase. The resulting image is then used to detect the relevant edges. Finally, a post-processing stage is used to find the true pectoral muscle edge. The method was applied to 84 MLO mammograms from the Mini-MIAS (Mammographic Image Analysis Society, London, U.K.) database. Evaluation of the pectoral muscle edge detected in the mammograms was performed based upon the percentage of false-positive (FP) and false-negative (FN) pixels determined by comparison between the numbers of pixels enclosed in the regions delimited by the edges identified by a radiologist and by the proposed method. The average FP and FN rates were, respectively, 0.58% and 5.77%. Furthermore, the results of the Gabor-filter-based method indicated low Hausdorff distances with respect to the hand-drawn pectoral muscle edges, with the mean and standard deviation being 3.84 +/- 1.73 mm over 84 images.


Subject(s)
Algorithms , Artificial Intelligence , Mammography/methods , Pattern Recognition, Automated , Pectoralis Muscles/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...