Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 52(20): 4969-80, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23852213

ABSTRACT

Microvibrations onboard greenhouse gases observing satellite (GOSAT) cause scan speed variations in the TANSO Fourier transform spectrometer. The associated periodic sampling errors generate ghost features in O2 A-band spectra, where surface pressure and aerosol properties are retrieved to determine the optical path through the atmosphere. A correction algorithm has been developed to re-compute the interferograms at equally spaced sampling intervals. The key is to determine iteratively the amplitude and phase of sinusoidal perturbations with predetermined frequencies to minimize the magnitude of the out-of-band ghosts artifacts after correction of the sampling grid. This correction algorithm drastically reduces errors in retrieved surface pressure and improves agreement with ground-based observations.

2.
Appl Opt ; 46(21): 4674-9, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17609714

ABSTRACT

An instrument line-shape correction method adapted to imaging Fourier-transform spectrometers is demonstrated. The method calibrates all pixels on the same spectral grid and permits a direct comparison of the spectral features between pixels such as emission or absorption lines. Computation speed is gained by using matrix line-shape integration formalism rather than properly inverting the line shape of each pixel. A monochromatic source is used to characterize the spectral shift of each pixel, and a line-shape correction scheme is then applied on measured interferograms. This work is motivated by the emergence of affordable infrared CCD cameras that are currently being integrated in imaging Fourier-transform spectrometers.

3.
Appl Opt ; 45(21): 5270-80, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16826265

ABSTRACT

A novel matrix inversion approach is proposed to correct several contributions to the instrument line shape (ILS) of a Fourier transform spectrometer. The matrix formalism for the ILS is first quickly reviewed. Formal inversion of the ILS matrix is next discussed, along with its limitations. The stability of the inversion process for large field-of view- (FOV-) limited and highly off-axis line shapes is investigated. The effect of inversion on the noise that is present in the spectrum is also presented. Use of classical iterative inversion methods, coupled with efficient synthesis algorithms, is proposed as a way to drastically speed up the inversion process. The method is applied to correct HBr spectra obtained from a laboratory spectrometer that has an adjustable field of view. ILSS from six FOVs are brought to the same spectral axis and to the same ideal sinc shape.


Subject(s)
Algorithms , Artifacts , Models, Theoretical , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/methods , Computer Simulation , Equipment Failure , Equipment Failure Analysis , Scattering, Radiation
4.
Appl Opt ; 45(3): 546-57, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16463741

ABSTRACT

The instrument line shape (ILS) of a Fourier-transform spectrometer is expressed in a matrix form. For all line shape effects that scale with wavenumber, the ILS matrix is shown to be transposed in the spectral and interferogram domains. The novel representation of the ILS matrix in the interferogram domain yields an insightful physical interpretation of the underlying process producing self-apodization. Working in the interferogram domain circumvents the problem of taking into account the effects of finite optical path difference and permits a proper discretization of the equations. A fast algorithm in O(N log2 N), based on the fractional Fourier transform, is introduced that permits the application of a constant resolving power line shape to theoretical spectra or forward models. The ILS integration formalism is validated with experimental data.

5.
Appl Opt ; 41(7): 1424-32, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11900023

ABSTRACT

A radiometric model of the instrument line shape (ILS) of Fourier-transform spectrometers is presented. We show first that common line-shape models are based on distribution of the radiant intensity in the interferometer. The complete steps between the source and the ILS are exposed as the core of the model. Relationships between the ILS, the spectrum as measured by the instrument, and the spectrum as emitted by the scene are demonstrated from the ILS model. Then the formal radiometric modeling of the ILS is derived, including the contribution of the aperture of the optical system. The particular case of a centered circular aperture with a uniform Lambertian radiance in the field of view is discussed. Conditions are deduced to ensure that the only spectral variation of the ILS is a scaling with wave number, as is usually assumed in current line-shape models. The ILS dependence on the scene is also discussed, and the effect of taking into account the radiometry on the ILS is estimated for the case of an ideal thin lens used as a collimator.

SELECTION OF CITATIONS
SEARCH DETAIL
...