Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Noncoding RNA ; 9(6)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37987367

ABSTRACT

The TGFß family member NODAL, repeatedly required during embryonic development, has also been associated with tumour progression. Our aim was to clarify the controversy surrounding its involvement in melanoma tumour progression. We found that the deletion of the NODAL exon 2 in a metastatic melanoma cell line impairs its ability to form tumours and colonize distant tissues. However, we show that this phenotype does not result from the absence of NODAL, but from a defect in the expression of a natural antisense transcript of NODAL, here called LADON. We show that LADON expression is specifically activated in metastatic melanoma cell lines, that its transcript is packaged in exosomes secreted by melanoma cells, and that, via its differential impact on the expression of oncogenes and tumour suppressors, it promotes the mesenchymal to amoeboid transition that is critical for melanoma cell invasiveness. LADON is, therefore, a new player in the regulatory network governing tumour progression in melanoma and possibly in other types of cancer.

2.
Tissue Barriers ; 11(3): 2104085, 2023 07 03.
Article in English | MEDLINE | ID: mdl-35875939

ABSTRACT

Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.


Subject(s)
Cadherins , Epidermis , Phosphorylation , Cadherins/metabolism , Epidermis/metabolism , ErbB Receptors/metabolism , Homeostasis
3.
Biomed Pharmacother ; 153: 113372, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35809481

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a critical regulator of different signalling cascades such as the EGFR pathway. The biological importance of PTP1B is further evidenced by knockout mice studies and the identification of recurrent mutations/deletions in PTP1B linked to metabolic and oncogenic alterations. Cisplatin is among the most widely used anticancer drug. The biological effects of cisplatin are thought to arise primarily from DNA damaging events involving cisplatin-DNA adducts. However, increasing evidence indicate that the biological properties of cisplatin could also rely on the perturbation of other processes such as cell signalling through direct interaction with certain cysteine residues in proteins. Here, we provide molecular, cellular and in vivo evidence suggesting that PTP1B is a target of cisplatin. Mechanistic studies indicate that cisplatin inhibited PTP1B in an irreversible manner and binds covalently to the catalytic cysteine residue of the enzyme. Accordingly, experiments conducted in cells and mice exposed to cisplatin showed inhibition of endogenous PTP1B and concomitant increase in tyrosine phosphorylation of EGFR. These findings are consistent with previous studies showing tyrosine phosphorylation-dependent activation of the EGFR pathway by cisplatin and with recent studies suggesting PTP1B inhibition by cisplatin and other platinum complexes. Importantly, our work provides novel mechanistic evidence that PTP1B is a protein target of cisplatin and is inhibited by this drug at molecular, cellular and in vivo levels. In addition, our work may contribute to the understanding of the pathways undergoing modulation upon cisplatin administration beyond of the established genotoxic effect of cisplatin.


Subject(s)
Cysteine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Catalytic Domain , Cisplatin/pharmacology , Cysteine/metabolism , ErbB Receptors/metabolism , Mice , Mice, Knockout , Phosphorylation , Tyrosine/metabolism
4.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806064

ABSTRACT

Human protein tyrosine phosphatase 1B (PTP1B) is a ubiquitous non-receptor tyrosine phosphatase that serves as a major negative regulator of tyrosine phosphorylation cascades of metabolic and oncogenic importance such as the insulin, epidermal growth factor receptor (EGFR), and JAK/STAT pathways. Increasing evidence point to a key role of PTP1B-dependent signaling in cancer. Interestingly, genetic defects in PTP1B have been found in different human malignancies. Notably, recurrent somatic mutations and splice variants of PTP1B were identified in human B cell and Hodgkin lymphomas. In this work, we analyzed the molecular and functional levels of three PTP1B mutations identified in primary mediastinal B cell lymphoma (PMBCL) patients and located in the WPD-loop (V184D), P-loop (R221G), and Q-loop (G259V). Using biochemical, enzymatic, and molecular dynamics approaches, we show that these mutations lead to PTP1B mutants with extremely low intrinsic tyrosine phosphatase activity that display alterations in overall protein stability and in the flexibility of the active site loops of the enzyme. This is in agreement with the key role of the active site loop regions, which are preorganized to interact with the substrate and to enable catalysis. Our study provides molecular and enzymatic evidence for the loss of protein tyrosine phosphatase activity of PTP1B active-site loop mutants identified in human lymphoma.


Subject(s)
Lymphoma, B-Cell , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Catalytic Domain , Humans , Lymphoma, B-Cell/genetics , Mutation , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Tyrosine/metabolism
5.
Sci Rep ; 12(1): 3655, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256668

ABSTRACT

EZH2 plays an essential role at the ß-selection checkpoint of T lymphopoiesis by regulating histone H3 lysine 27 trimethylation (H3K27me3) via its canonical mode of action. Increasing data suggest that EZH2 could also regulate other cellular functions, such as cytoskeletal reorganization, via its noncanonical pathway. Consequently, we investigated whether the EZH2 noncanonical pathway could be involved in early T-cell maturation, which requires cell polarization. We observed that EZH2 localization is tightly regulated during the early stages of T-cell development and that EZH2 relocalizes in the nucleus of double-negative thymocytes enduring TCRß recombination and ß-selection processes. Furthermore, we observed that EZH2 and EED, but not Suz12, colocalize with the microtubule organization center (MTOC), which might prevent its inappropriate polarization in double negative cells. In accordance with these results, we evidenced the existence of direct or indirect interaction between EED and α-tubulin. Taken together, these results suggest that the EZH2 noncanonical pathway, in association with EED, is involved in the early stages of T-cell maturation.


Subject(s)
Lymphopoiesis , Thymocytes , Cell Differentiation , Cell Nucleus/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Microtubules/metabolism , Thymocytes/metabolism
6.
Sci Rep ; 11(1): 22705, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34811416

ABSTRACT

E-cadherin and EGFR are known to be closely associated hence regulating differentiation and proliferation notably in epithelia. We have previously shown that galectin-7 binds to E-cadherin and favors its retention at the plasma membrane. In this study, we shed in light that galectin-7 establishes a physical link between E-cadherin and EGFR. Indeed, our results demonstrate that galectin-7 also binds to EGFR, but unlike the binding to E-cadherin this binding is sugar dependent. The establishment of E-cadherin/EGFR complex and the binding of galectin-7 to EGFR thus lead to a regulation of its signaling and intracellular trafficking allowing cell proliferation and migration control. In vivo observations further support these results since an epidermal thickening is observed in galectin-7 deficient mice. This study therefore reveals that galectin-7 controls epidermal homeostasis through the regulation of E-cadherin/EGFR balance.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , ErbB Receptors/metabolism , Signal Transduction/genetics , Animals , Cell Differentiation/genetics , Cell Membrane/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Epidermis/metabolism , Female , Galectins/genetics , Galectins/metabolism , Gene Silencing , HaCaT Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation
7.
Sci Rep ; 7(1): 17086, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213102

ABSTRACT

Re-epithelialisation of wounded epidermis is ensured by collective cell migration of keratinocytes. Efficient collective migration requires the maintenance of intercellular adhesion, notably through adherens junctions, to favour cell communication, support tension forces and coordinated movement . Galectin-7, a soluble lectin expressed in stratified epithelia, has been previously implicated in cell migration and intercellular adhesion. Here, we revealed a new function of galectin-7 in the control of directionality and collective behaviour in migrating keratinocytes. Consistently, we identified galectin-7 as a direct partner of E-cadherin, a key component of adherens junctions. Unexpectedly, this interaction does not require glycosylation motifs. Focusing on the underlying mechanisms, we showed that galectin-7 stabilizes E-cadherin at the plasma membrane, restraining its endocytosis. Interestingly, galectin-7 silencing decreases E-cadherin-mediated intercellular adhesion. Consequently, this study not only identifies a new stabilizer of adherens junctions but also emphasises the importance of the interplay between E-cadherin turnover and intercellular adhesion strength.


Subject(s)
Cadherins/metabolism , Galectins/metabolism , Adherens Junctions/metabolism , Cadherins/chemistry , Cell Adhesion , Cell Line , Cell Membrane/metabolism , Cell Movement , Endocytosis , Fluorescence Recovery After Photobleaching , Galectins/antagonists & inhibitors , Galectins/genetics , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Protein Binding , Protein Domains , RNA Interference , RNA, Small Interfering/metabolism
8.
Int J Mol Sci ; 18(12)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257082

ABSTRACT

Galectins are small unglycosylated soluble lectins distributed both inside and outside the cells. They share a conserved domain for the recognition of carbohydrates (CRD). Although galectins have a common affinity for ß-galatosides, they exhibit different binding preferences for complex glycans. First described twenty years ago, galectin-7 is a prototypic galectin, with a single CRD, able to form divalent homodimers. This lectin, which is mainly expressed in stratified epithelia, has been described in epithelial tissues as being involved in apoptotic responses, in proliferation and differentiation but also in cell adhesion and migration. Most members of the galectins family have been associated with cancer biology. One of the main functions of galectins in cancer is their immunomodulating potential and anti-angiogenic activity. Indeed, galectin-1 and -3, are already targeted in clinical trials. Another relevant function of galectins in tumour progression is their ability to regulate cell migration and cell adhesion. Among these galectins, galectin-7 is abnormally expressed in various cancers, most prominently in carcinomas, and is involved in cancer progression and metastasis but its precise functions in tumour biology remain poorly understood. In this issue, we will focus on the physiological functions of galectin-7 in epithelia and present the alterations of galectin-7 expression in carcinomas with the aim to describe its possible functions in tumour progression.


Subject(s)
Carcinoma/metabolism , Epithelial Cells/metabolism , Galectins/metabolism , Animals , Apoptosis , Carcinoma/genetics , Carcinoma/pathology , Cell Adhesion , Cell Movement , Epithelial Cells/physiology , Galectins/chemistry , Galectins/genetics , Homeostasis , Humans
9.
Chembiochem ; 18(24): 2428-2440, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29024281

ABSTRACT

Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7.


Subject(s)
Galectins/antagonists & inhibitors , Microarray Analysis , Amino Sugars , Animals , Fluorescence Polarization , Galectin 3/antagonists & inhibitors , Humans , Oxazoles/chemistry , Sensitivity and Specificity
10.
Chembiochem ; 18(8): 782-789, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28166391

ABSTRACT

Galectins have been recognized as potential novel therapeutic targets for the numerous fundamental biological processes in which they are involved. Galectins are key players in homeostasis, and as such their expression and function are finely tuned in vivo. Thus, their modes of action are complex and remain largely unexplored, partly because of the lack of dedicated tools. We thus designed galectin inhibitors from a lactosamine core, functionalized at key C2 and C3' positions by aromatic substituents to ensure both high affinity and selectivity, and equipped with a spacer that can be modified on demand to further modulate their physico-chemical properties. As a proof-of-concept, galectin-3 was selectively targeted. The efficacy of the synthesized di-aromatic lactosamine tools was shown in cellular assays to modulate collective epithelial cell migration and to interfere with actin/cortactin localization.


Subject(s)
Amino Sugars/pharmacology , Galectin 3/antagonists & inhibitors , Wound Healing/drug effects , Amino Sugars/chemical synthesis , Amino Sugars/chemistry , Blood Proteins , Cell Line , Cell Movement/drug effects , Cell Polarity/drug effects , Epithelial Cells/drug effects , Epithelial Cells/physiology , Galectin 1/antagonists & inhibitors , Galectins/antagonists & inhibitors , Humans , Keratinocytes/drug effects , Keratinocytes/physiology
11.
Biochem Biophys Res Commun ; 473(1): 87-91, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26995087

ABSTRACT

Reducing sugars and dicarbonyls form covalent adducts with proteins through a nonenzymatic process known as glycation, which inactivates proteins, is increased in diabetic patients and is associated with diabetic complications, including retinopathy, cataracts, nephropathy, neuropathy, cardiomyopathy and skin defects. We recently characterized DJ-1/Park7 as a protein deglycase that repairs proteins from glycation by glyoxal and methylglyoxal, two major glycating agents which are responsible for up to 65% of glycation events. In this study, we investigated the ability of DJ-1 to prevent protein glycation in keratinocytes. Glycation of collagen and keratinocyte proteins was tested by measuring ultraviolet absorption and fluorescence emission. Protein glycation in HaCaT keratinocytes was investigated by immunodetection with anti-advanced glycation endproduct antibodies, after DJ-1 depletion or overexpression. In vitro, DJ-1 prevented glycation of collagen and keratinocyte protein extracts. In cell culture, DJ-1 depletion by small interfering RNAs resulted in a 3-fold increase in protein glycation levels. Moreover, protein glycation levels were decreased several-fold in cells overexpressing DJ-1 after addition of the Nrf2 inducer sulforaphane or after transfection with a DJ-1 plasmid. Thus, the DJ-1 deglycase plays a major role in preventing protein glycation in eukaryotic cells and might be important for preventing skin glycation.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Keratinocytes/metabolism , Oncogene Proteins/metabolism , Aldehydes/chemistry , Carbohydrates/chemistry , Cell Line , Diabetes Complications/metabolism , Gene Silencing , Glycation End Products, Advanced/metabolism , Glycosylation , Glyoxal/chemistry , Humans , Isothiocyanates/chemistry , Keratinocytes/cytology , NF-E2-Related Factor 2/metabolism , Protein Deglycase DJ-1 , Skin/drug effects , Skin/metabolism , Skin Aging , Sulfoxides
12.
Med Sci (Paris) ; 31(5): 499-505, 2015 May.
Article in French | MEDLINE | ID: mdl-26059300

ABSTRACT

Galectins constitute a family of soluble animal lectins defined by their evolutionary conserved carbohydrate recognition domain and their affinity for ß-galactosides containing glycoconjugates. Each galectin is characterized by a specific spatio-temporal distribution and a unique set of ligands and molecular partners. Interestingly, galectins are found both extracellularly and intracellularly and modulate various cellular processes. Knock-out mutant mice for galectins-1, 3 or 7 are viable but display a wide range of defects under various stress conditions. Indeed, galectins are multifunctional proteins involved in cell-cell and cell-extracellular matrix interactions, organization of membrane domains, cell signalling and also in intracellular trafficking, apoptosis, regulation of cell cycle. Galectins represent potential therapeutic targets, especially in the context of cancer and inflammatory diseases.


Subject(s)
Galectins/physiology , Adaptive Immunity/physiology , Animals , Apoptosis/physiology , Binding Sites , Cell Adhesion/physiology , Cell Physiological Phenomena , Drug Design , Evolution, Molecular , Galectins/antagonists & inhibitors , Galectins/chemistry , Galectins/genetics , Gene Expression Regulation , Humans , Infections/immunology , Inflammation/drug therapy , Inflammation/immunology , Mice , Mice, Knockout , Molecular Targeted Therapy , Multigene Family , Mutation , Neoplasms/drug therapy , Polysaccharides/metabolism , Protein Structure, Tertiary , RNA Splicing/physiology , Subcellular Fractions/metabolism , Substrate Specificity
13.
PLoS One ; 10(3): e0119031, 2015.
Article in English | MEDLINE | ID: mdl-25741714

ABSTRACT

BACKGROUND: The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo. METHODS: We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury. RESULTS: The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis. CONCLUSION: These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations.


Subject(s)
Epidermis/metabolism , Galectins/genetics , Intercellular Junctions/metabolism , Wound Healing , Animals , Blotting, Western , Cell Line , Epidermal Cells , Epidermis/radiation effects , Mice , Mice, Transgenic , Ultraviolet Rays
14.
Tissue Barriers ; 2: e29103, 2014.
Article in English | MEDLINE | ID: mdl-25097826

ABSTRACT

Galectins are a family of animal lectins comprising 15 members in vertebrates. These proteins are involved in many biological processes including epithelial homeostasis and tumor progression by displaying intracellular and extracellular activities. Hence Galectins can be found either in the cytoplasm or the nucleus, associated with membranes or in the extracellular matrix. Current studies aim at understanding the roles of Galectins in cell-cell and cell-matrix adhesion, cellular polarity and motility. This review discusses recent progress in defining the specificities and mechanisms of action of Galectins as cell regulators in epithelial cells. Physiological, cellular and molecular aspects of Galectin specificities will be treated successively.

15.
MAbs ; 5(1): 56-69, 2013.
Article in English | MEDLINE | ID: mdl-23221682

ABSTRACT

Endothelin B receptor (ETBR) is a G protein-coupled receptor able to bind equally to the three identified human endothelin peptides. It is expressed primarily on vascular endothelial cells and involved in various physiological processes including vascular tone homeostasis, enteric nervous system development, melanogenesis and angiogenesis. Furthermore, overactivation or overexpression of ETBR have been associated with the development of various diseases such as cardiovascular disorders and cancers. Therefore, ETBR appears to be relevant target for the therapy or diagnosis of highly prevalent human diseases. In this study, we report the in vitro characterization of rendomab-B1, a monoclonal antibody (mAb) obtained by genetic immunization, which selectively recognizes the native form of human ETBR (hETBR). Rendomab-B1 is the first-reported mAb that behaves as a potent antagonist of hETBR. It recognizes an original extracellular conformational epitope on the receptor, distinct from the endothelin-1 (ET-1) binding site. Rendomab-B1 not only blocks ET-1-induced calcium signaling pathway and triggers rapid receptor internalization on recombinant hETBR-expressing cells, but also exerts pharmacological activities on human vascular endothelial cells, reducing both cell viability and ET-1-induced hETBR synthesis. In addition, binding experiments using rendomab-B1 on different melanoma cell lines reveal the structural and functional heterogeneity of hETBR expressed at the surface of these cancer cells, strongly suggesting the existence of tumor-specific receptors. Collectively, our results underscore the value of rendomab-B1 for research, therapeutic and diagnostic applications dealing with hETBR.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Endothelin B Receptor Antagonists , Receptor, Endothelin B/immunology , Animals , CHO Cells/metabolism , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cricetinae , DNA/administration & dosage , Female , HEK293 Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunization , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , Receptors, G-Protein-Coupled/metabolism
16.
BMC Cancer ; 12: 455, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23039186

ABSTRACT

BACKGROUND: Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18) expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. METHODS: A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. RESULTS: We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. CONCLUSION: Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration.


Subject(s)
Cell Communication/physiology , Human Umbilical Vein Endothelial Cells/cytology , Intercellular Adhesion Molecule-1/biosynthesis , Lymphocyte Function-Associated Antigen-1/biosynthesis , Melanoma/pathology , Transendothelial and Transepithelial Migration/physiology , CD11a Antigen/biosynthesis , CD18 Antigens/biosynthesis , Cell Line, Tumor , Coculture Techniques , Cytokines/genetics , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Melanoma/genetics , Melanoma/metabolism , Microscopy, Fluorescence , Polymerase Chain Reaction , Tumor Cells, Cultured
17.
PLoS One ; 7(4): e35667, 2012.
Article in English | MEDLINE | ID: mdl-22536420

ABSTRACT

Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.


Subject(s)
Angiotensin II/physiology , Bone Neoplasms/secondary , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Lung Neoplasms/secondary , Transendothelial and Transepithelial Migration , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/metabolism , Cell Adhesion/genetics , Cell Line, Tumor , Cell Proliferation , Coculture Techniques , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , Transendothelial and Transepithelial Migration/genetics
18.
Cell Cycle ; 11(8): 1634-45, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22487681

ABSTRACT

Melanoma tumor cells shift between proliferative and invasive states based on their plasticity and microenvironmental conditions. Our team has shown that melanoma cells, grown as spheroids in a neural cell crest medium, polarize toward an invasive phenotype, characterized by a higher motility, a poor proliferation rate and a gain of pluripotency gene expression (Nanog and Oct4) when compared with cells grown in two dimensions in a serum-contaning medium. In agreement with the phenotypic switching hypothesis, most of these features are reversible. Microarray studies comparing two- vs. three-dimensional cultures revealed the downregulation of a polycomb-like protein, PHF19 (PHD finger protein 19), in the spheroids. As Polycomb proteins are involved in the epigenetic control of gene expression, we hypothesized that PHF19 might play a role in the switch between proliferative and invasive phenotypes. In this report, we show that PHF19 silencing reduces the cell proliferation rate and increases the transendothelial migration capacities of melanoma cell lines. However, PHF19 does not modulate the transcription level of Oct4 and Nanog. In the search of an upstream transcriptional regulator of the above genes, we identified the Akt signaling cascade as an inhibitor of Oct4 and Nanog expression and an activator for PHF19 expression. Through chromatin immunoprecipitation, we further provide evidence that phospho-Akt is part of the transcriptional complex associated to the promoters of all three genes. Our data therefore indicate the role of PHF19 and its upstream regulator, Akt, in the phenotype switch of melanoma cells from proliferative to invasive states.


Subject(s)
Melanoma/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chromatin Immunoprecipitation , Cyclins/metabolism , DNA-Binding Proteins , Homeodomain Proteins/metabolism , Humans , Melanoma/pathology , Nanog Homeobox Protein , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Octamer Transcription Factor-3/metabolism , Phosphorylation , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factors
19.
J Cancer Res Clin Oncol ; 138(7): 1145-54, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22406932

ABSTRACT

PURPOSE: Melanoma tumors are highly heterogeneous and can undergo phenotypic modifications depending on their plasticity and the microenvironment, with shifts between proliferative and invasive states. We have shown that melanoma cells, grown as spheroids in a neural crest cell medium, polarize toward an invasive and motile phenotype, in agreement with transcriptomic modulations, including the up-regulation of Nanog and Oct4. Overexpression of these genes was shown to be associated with poor prognosis and metastatic forms of some cancers. We thus investigated implication of Nanog and Oct4, two embryonic transcription factors, in melanoma motility. METHODS: Our team used stable transfection of Nanog or Oct4 in A375 melanoma cell line to investigate motility in a wound healing assay and a transendothelial migration assay. Using semiquantitative RT-PCR, expression of two gene panels involved either in mesenchymal motility or in amoeboid migration was studied. RESULTS: Strongly enhanced capacities of motility and extravasation were observed with cells overexpressing Oct4 and Nanog. The A375 cell line has been described as having a mesenchymal migration type. However, in the Oct4 and Nanog transfectants, several amoeboid migration markers are strongly induced. Accordingly, amoeboid migration inhibitors decrease significantly the transmigration of Oct4- and Nanog-expressing cells through endothelial cells. CONCLUSIONS: We propose here that Nanog and Oct4 pluripotency marker expression in melanoma cells increases the transmigration capacity of these cells through the gain of amoeboid motility, leading to higher invasiveness and aggressiveness.


Subject(s)
Homeodomain Proteins/genetics , Melanoma/metabolism , Octamer Transcription Factor-3/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Melanoma/pathology , Octamer Transcription Factor-3/genetics
20.
Melanoma Res ; 22(3): 184-94, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22454190

ABSTRACT

Melanoma tumors have been shown to comprise both invasive and proliferative cell subpopulations. These populations are highly plastic, thus hampering full characterization and therapeutic targeting of dormant and partially dedifferentiated invasive cells. We have reported, previously, that melanoma cells grown in a serum-free neural crest medium, in which they propagate as spheroids, show higher invasiveness and increased immune escape. In addition, in spheroids, we showed the increased expression of several genes which are involved in pluripotency, differentiation, and invasion. We therefore proposed that these culture conditions favor the polarization of proliferative melanoma cells toward an invasive state. As plasticity may suggest a reversible polarization, the aim of this report is to assess the transient phenotype of invasive cells generated through this procedure. We provide evidence that spheroid cells mimic dormant populations, and that this phenotype is fully reversible when cells are reintroduced into culture media that contain serum in which they grow as a monolayer. We also show that most transcriptional deregulations can be reversed. To further explain this plasticity in melanoma cells, we explored the epigenetic status of four gene promoters, assuming changes in acetylation or dimethylation on histone 3. We show reversible modifications on lysine 9 and lysine 4. We propose that spheroids allow the transient polarization of melanoma cells toward enhanced dormancy, loss of differentiation, and invasiveness, thereby reproducing the properties and plasticity of invasive subpopulations in melanoma tumors. This in-vitro model will allow further characterization and targeting of melanoma invasive cell populations.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Melanoma/pathology , Neural Crest , Tumor Microenvironment , Acetylation , Cell Adhesion , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly , Culture Media, Serum-Free/chemistry , Culture Media, Serum-Free/metabolism , Dealkylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Humans , Lysine , Melanoma/genetics , Melanoma/metabolism , Neoplasm Invasiveness , Neural Crest/metabolism , Phenotype , Signal Transduction/genetics , Spheroids, Cellular , Time Factors , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...