Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291334

ABSTRACT

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Subject(s)
Corpus Striatum , Huntington Disease , Humans , Animals , Cerebellum/metabolism , Huntington Disease/genetics , Disease Models, Animal
2.
bioRxiv ; 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37333326

ABSTRACT

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

3.
Cell Rep ; 37(10): 110078, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879276

ABSTRACT

Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Mismatch Repair , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Genomic Instability , Huntington Disease/genetics , Multifunctional Enzymes/metabolism , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion , Animals , Autism Spectrum Disorder/enzymology , Cell Line, Tumor , Disease Progression , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Genetic Predisposition to Disease , Humans , Huntington Disease/enzymology , Multifunctional Enzymes/genetics , Mutation , Nucleic Acid Conformation , Phenotype , Protein Binding , Sf9 Cells , Spinocerebellar Ataxias/enzymology
4.
Sci Rep ; 7(1): 10715, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878282

ABSTRACT

Existing cancer therapies are often associated with drug resistance and toxicity, which results in poor prognosis and recurrence of cancer. This necessitates the identification and development of novel therapeutics against existing as well as novel cellular targets. In this study, a novel class of Benzocoumarin-Stilbene hybrid molecules were synthesized and evaluated for their antiproliferative activity against various cancer cell lines followed by in vivo antitumor activity in a mouse model of cancer. The most promising molecule among the series, i.e. compound (E)-4-(3,5-dimethoxystyryl)-2H-benzo[h]chromen-2-one (19) showed maximum antiproliferative activity in breast cancer cell lines (MDA-MB-231 and 4T1) and decreased the tumor size in the in-vivo 4T1 cell-induced orthotopic syngeneic mouse breast cancer model. The mechanistic studies of compound 19 by various biochemical, cell biology and biophysical approaches suggest that the compound binds to and inhibits the human DNA ligase I enzyme activity that might be the cause for significant reduction in tumor growth and may constitute a promising next-generation therapy against breast cancers.


Subject(s)
Anthracenes , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA Ligase ATP/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Stilbenes , Animals , Anthracenes/chemistry , Apoptosis/drug effects , Breast Neoplasms , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , Disease Models, Animal , Female , Humans , Mice , Molecular Structure , Signal Transduction/drug effects , Stilbenes/chemistry , Xenograft Model Antitumor Assays
5.
Mol Biosyst ; 13(8): 1630-1639, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28685785

ABSTRACT

Human Flap endonuclease1 (FEN1) is an enzyme that is indispensable for DNA replication and repair processes and inhibition of its Flap cleavage activity results in increased cellular sensitivity to DNA damaging agents (cisplatin, temozolomide, MMS, etc.), with the potential to improve cancer prognosis. Reports of the high expression levels of FEN1 in several cancer cells support the idea that FEN1 inhibitors may target cancer cells with minimum side effects to normal cells. In this study, we used large publicly available, high-throughput screening data of small molecule compounds targeted against FEN1. Two machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF), were utilized to generate four classification models from huge PubChem bioassay data containing probable FEN1 inhibitors and non-inhibitors. We also investigated the influence of randomly selected Zinc-database compounds as negative data on the outcome of classification modelling. The results show that the SVM model with inactive compounds was superior to RF with Matthews's correlation coefficient (MCC) of 0.67 for the test set. A Maybridge database containing approximately 53 000 compounds was screened and top ranking 5 compounds were selected for enzyme and cell-based in vitro screening. The compound JFD00950 was identified as a novel FEN1 inhibitor with in vitro inhibition of flap cleavage activity as well as cytotoxic activity against a colon cancer cell line, DLD-1.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Flap Endonucleases/antagonists & inhibitors , Machine Learning , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Colon/drug effects , Colon/enzymology , Colon/pathology , Databases, Chemical , Drug Discovery , Enzyme Inhibitors/chemistry , Epithelial Cells/enzymology , Epithelial Cells/pathology , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Gene Expression , HEK293 Cells , Humans , Inhibitory Concentration 50 , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Organ Specificity
6.
DNA Repair (Amst) ; 42: 72-81, 2016 06.
Article in English | MEDLINE | ID: mdl-27161865

ABSTRACT

DNA replication is a complex phenomenon that requires the concerted action of several enzymes, together with their protein and non-protein cofactors. In the nucleus, the two DNA strands are duplicated by two completely independent methods due to their anti-parallel orientation and the restrictive nature of DNA polymerases that allow DNA synthesis in the 5'-3' direction only. In this review, we focus on the proteins that are involved in the more complex and discontinuous process of lagging strand DNA synthesis by the formation of small DNA fragments called Okazaki fragments which are later sealed to form a continuous strand of DNA. We try and connect all the protein-protein interactions important for lagging strand synthesis in the S-phase of the cell cycle, describe the dynamics of these interactions and go on to discuss the post-translational modifications that affect them. We also look at how mutations in any of the players of the lagging strand synthesis can cause genomic instability leading to cancer and discuss if any of the players may be targeted for cancer therapy.


Subject(s)
DNA Replication , Genomic Instability , Neoplasm Proteins/metabolism , Neoplasms/genetics , Amino Acid Sequence , Animals , Humans , Neoplasm Proteins/chemistry , Neoplasms/metabolism , Protein Processing, Post-Translational
7.
Med Res Rev ; 34(3): 567-95, 2014 May.
Article in English | MEDLINE | ID: mdl-23959747

ABSTRACT

Living organisms belonging to all three domains of life, viz., eubacteria, archaeabacteria, and eukaryotes encode one or more DNA ligases. DNA ligases are indispensable in various DNA repair and replication processes and a deficiency or an inhibition of their activity can lead to accumulation of DNA damage and strand breaks. DNA damage, specially strand breaks at unsustainable levels can lead to replication block and/or cell death. DNA ligases as potential anticancer targets have been realized only recently. There is enough rationale to suggest that ligases have a tremendous potential for novel therapeutics including anticancer and antibacterial therapy, specially when the world is facing acute problems of drug resistance and chemotherapy failure, with an immediate need for new therapeutic targets. Here, we review the current state of the art in the development of human ligase inhibitors, their structures, molecular mechanisms, physiological effects, and their potential in future cancer therapy. Citing examples, we focus on strategies for improving the activity and specificity of existing and novel inhibitors by using structure-based rational approaches. In the end, we describe potential new sites on the ligase I protein that can be targeted for the development of novel inhibitors. This is the first comprehensive review to compile all known human ligase inhibitors and to provide a rationale for the further development of ligase inhibitors for cancer therapy.


Subject(s)
DNA Ligases/metabolism , Neoplasms/enzymology , Neoplasms/therapy , Amino Acid Sequence , DNA Ligases/antagonists & inhibitors , DNA Ligases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/classification , Enzyme Inhibitors/pharmacology , Humans , Molecular Sequence Data , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...