Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 11(3): 486-497, 2018 05.
Article in English | MEDLINE | ID: mdl-29333753

ABSTRACT

In a 54 m3 large-scale penicillin fermentor, the cells experience substrate gradient cycles at the timescales of global mixing time about 20-40 s. Here, we used an intermittent feeding regime (IFR) and a two-compartment reactor (TCR) to mimic these substrate gradients at laboratory-scale continuous cultures. The IFR was applied to simulate substrate dynamics experienced by the cells at full scale at timescales of tens of seconds to minutes (30 s, 3 min and 6 min), while the TCR was designed to simulate substrate gradients at an applied mean residence time (τc) of 6 min. A biological systems analysis of the response of an industrial high-yielding P. chrysogenum strain has been performed in these continuous cultures. Compared to an undisturbed continuous feeding regime in a single reactor, the penicillin productivity (qPenG ) was reduced in all scale-down simulators. The dynamic metabolomics data indicated that in the IFRs, the cells accumulated high levels of the central metabolites during the feast phase to actively cope with external substrate deprivation during the famine phase. In contrast, in the TCR system, the storage pool (e.g. mannitol and arabitol) constituted a large contribution of carbon supply in the non-feed compartment. Further, transcript analysis revealed that all scale-down simulators gave different expression levels of the glucose/hexose transporter genes and the penicillin gene clusters. The results showed that qPenG did not correlate well with exposure to the substrate regimes (excess, limitation and starvation), but there was a clear inverse relation between qPenG and the intracellular glucose level.


Subject(s)
Bioreactors/microbiology , Culture Media/chemistry , Penicillins/biosynthesis , Penicillium chrysogenum/growth & development , Carbohydrate Metabolism , Carbon/metabolism , Fermentation
2.
Biotechnol Bioeng ; 115(1): 114-125, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28865116

ABSTRACT

In the present work, by performing chemostat experiments at 400 and 600 RPM, two typical power inputs representative of industrial penicillin fermentation (P/V, 1.00 kW/m3 in more remote zones and 3.83 kW/m3 in the vicinity of the impellers, respectively) were scaled-down to bench-scale bioreactors. It was found that at 400 RPM applied in prolonged glucose-limited chemostat cultures, the previously reported degeneration of penicillin production using an industrial Penicillium chrysogenum strain was virtually absent. To investigate this, the cellular response was studied at flux (stoichiometry), residual glucose, intracellular metabolite and transcript levels. At 600 RPM, 20% more cell lysis was observed and the increased degeneration of penicillin production was accompanied by a 22% larger ATP gap and an unexpected 20-fold decrease in the residual glucose concentration (Cs,out ). At the same time, the biomass specific glucose consumption rate (qs ) did not change but the intracellular glucose concentration was about sixfold higher, which indicates a change to a higher affinity glucose transporter at 600 RPM. In addition, power input differences cause differences in the diffusion rates of glucose and the calculated Batchelor diffusion length scale suggests the presence of a glucose diffusion layer at the glucose transporting parts of the hyphae, which was further substantiated by a simple proposed glucose diffusion-uptake model. By analysis of calculated mass action ratios (MARs) and energy consumption, it indicated that at 600 RPM glucose sensing and signal transduction in response to the low Cs,out appear to trigger a gluconeogenic type of metabolic flux rearrangement, a futile cycle through the pentose phosphate pathway (PPP) and a declining redox state of the cytosol. In support of the change in glucose transport and degeneration of penicillin production at 600 RPM, the transcript levels of the putative high-affinity glucose/hexose transporter genes Pc12g02880 and Pc06g01340 increased 3.5- and 3.3-fold, respectively, and those of the pcbC gene encoding isopenicillin N-synthetase (IPNS) were more than twofold lower in the time range of 100-200 hr of the chemostat cultures. Summarizing, changes at power input have unexpected effects on degeneration and glucose transport, and result in significant metabolic rearrangements. These findings are relevant for the industrial production of penicillin, and other fermentations with filamentous microorganisms.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bioreactors/microbiology , Penicillins/biosynthesis , Penicillium chrysogenum/growth & development , Penicillium chrysogenum/metabolism , Biological Factors/metabolism , Fermentation , Glucose/metabolism , Systems Analysis
3.
Biotechnol Bioeng ; 114(8): 1733-1743, 2017 08.
Article in English | MEDLINE | ID: mdl-28322433

ABSTRACT

A powerful approach for the optimization of industrial bioprocesses is to perform detailed simulations integrating large-scale computational fluid dynamics (CFD) and cellular reaction dynamics (CRD). However, complex metabolic kinetic models containing a large number of equations pose formidable challenges in CFD-CRD coupling and computation time afterward. This necessitates to formulate a relatively simple but yet representative model structure. Such a kinetic model should be able to reproduce metabolic responses for short-term (mixing time scale of tens of seconds) and long-term (fed-batch cultivation of hours/days) dynamics in industrial bioprocesses. In this paper, we used Penicillium chrysogenum as a model system and developed a metabolically structured kinetic model for growth and production. By lumping the most important intracellular metabolites in 5 pools and 4 intracellular enzyme pools, linked by 10 reactions, we succeeded in maintaining the model structure relatively simple, while providing informative insight into the state of the organism. The performance of this 9-pool model was validated with a periodic glucose feast-famine cycle experiment at the minute time scale. Comparison of this model and a reported black box model for this strain shows the necessity of employing a structured model under feast-famine conditions. This proposed model provides deeper insight into the in vivo kinetics and, most importantly, can be straightforwardly integrated into a computational fluid dynamic framework for simulating complete fermentation performance and cell population dynamics in large scale and small scale fermentors. Biotechnol. Bioeng. 2017;114: 1733-1743. © 2017 Wiley Periodicals, Inc.


Subject(s)
Cell Proliferation/physiology , Glucose/metabolism , Metabolic Flux Analysis/methods , Metabolic Networks and Pathways/physiology , Models, Biological , Penicillium chrysogenum/physiology , Computer Simulation , Fungal Proteins/metabolism , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Fungal/physiology , Kinetics , Metabolic Clearance Rate/physiology , Multienzyme Complexes/metabolism , Penicillium chrysogenum/cytology , Time Factors
4.
Eng Life Sci ; 16(7): 652-663, 2016 10.
Article in English | MEDLINE | ID: mdl-27917102

ABSTRACT

The trajectories, referred to as lifelines, of individual microorganisms in an industrial scale fermentor under substrate limiting conditions were studied using an Euler-Lagrange computational fluid dynamics approach. The metabolic response to substrate concentration variations along these lifelines provides deep insight in the dynamic environment inside a large-scale fermentor, from the point of view of the microorganisms themselves. We present a novel methodology to evaluate this metabolic response, based on transitions between metabolic "regimes" that can provide a comprehensive statistical insight in the environmental fluctuations experienced by microorganisms inside an industrial bioreactor. These statistics provide the groundwork for the design of representative scale-down simulators, mimicking substrate variations experimentally. To focus on the methodology we use an industrial fermentation of Penicillium chrysogenum in a simplified representation, dealing with only glucose gradients, single-phase hydrodynamics, and assuming no limitation in oxygen supply, but reasonably capturing the relevant timescales. Nevertheless, the methodology provides useful insight in the relation between flow and component fluctuation timescales that are expected to hold in physically more thorough simulations. Microorganisms experience substrate fluctuations at timescales of seconds, in the order of magnitude of the global circulation time. Such rapid fluctuations should be replicated in truly industrially representative scale-down simulators.

5.
Metab Eng ; 32: 155-173, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26476338

ABSTRACT

In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT).


Subject(s)
Penicillins/biosynthesis , Phenylacetates/metabolism , Acyltransferases/biosynthesis , Acyltransferases/genetics , Algorithms , Carbon/metabolism , Culture Media , Filtration , Glucose/metabolism , Kinetics , Metabolic Networks and Pathways , Models, Biological , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/metabolism , Penicillin-Binding Proteins/biosynthesis , Penicillin-Binding Proteins/genetics , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism
6.
J Chromatogr A ; 1311: 115-20, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24021835

ABSTRACT

A fast, sensitive and specific analytical method, based on ion pair reversed phase ultrahigh performance liquid chromatography tandem mass spectrometry, IP-RP-UHPLC-MS/MS, was developed for quantitative determination of intracellular coenzyme A (CoA), acetyl CoA, succinyl CoA, phenylacetyl CoA, flavin mononucleotide, (FMN), flavin adenine dinucleotide, (FAD), NAD, NADH, NADP, NADPH. Dibutylammonium acetate (DBAA) was used as volatile ion pair reagent in the mobile phase. Addition of DBAA to the sample solutions resulted in an enhanced sensitivity for the phosphorylated coenzymes. Tris (2-carboxyethyl) phosphine hydrochloride (TCEP·HCl), was added to keep CoA in the reduced form. Isotope dilution mass spectrometry (IDMS) was applied for quantitative measurements for which culture derived global U-(13)C-labeled cell extract was used as internal standard. The analytical method was validated by determining the limit of detection, the limit of quantification, repeatability and intermediate precision. The method was successfully applied for quantification of coenzymes in the cell extracts of Saccharomyces cerevisiae.


Subject(s)
Chromatography, High Pressure Liquid/methods , Coenzymes/analysis , Saccharomyces cerevisiae/enzymology , Tandem Mass Spectrometry/methods , Metabolomics , Saccharomyces cerevisiae/cytology
7.
Biotechnol Prog ; 28(2): 337-48, 2012.
Article in English | MEDLINE | ID: mdl-22223600

ABSTRACT

Although penicillin-G (PenG) production by the fungus Penicillium chrysogenum is a well-studied process, little is known about the mechanisms of transport of the precursor phenylacetic acid (PAA) and the product PenG over the cell membrane. To obtain more insight in the nature of these mechanisms, in vivo stimulus response experiments were performed with PAA and PenG in chemostat cultures of P. chrysogenum at time scales of seconds to minutes. The results indicated that PAA is able to enter the cell by passive diffusion of the undissociated acid at a high rate, but is at the same time actively excreted, possibly by an ATP-binding cassette transporter. This results in a futile cycle, dissipating a significant amount of metabolic energy, which was confirmed by increased rates of substrate and oxygen consumption, and carbon dioxide production. To estimate the kinetic properties of passive import and active export of PAA over the cell membrane, a dynamic mathematical model was constructed. With this model, a good description of the dynamic data could be obtained. Also, PenG was found to be rapidly taken up by the cells upon extracellular addition, indicating that PenG transport is reversible. The measured concentration gradient of PenG over the cell membrane corresponded well with facilitated transport. Also, for PenG transport, a dynamic model was constructed and validated with experimental data. The outcome of the model simulations was in agreement with the presence of a facilitated transport system for PenG.


Subject(s)
Penicillin G/metabolism , Penicillium chrysogenum/metabolism , Phenylacetates/metabolism , Biological Transport , Cell Membrane/chemistry , Cell Membrane/metabolism , Kinetics , Penicillin G/chemistry , Penicillium chrysogenum/chemistry , Penicillium chrysogenum/genetics , Phenylacetates/chemistry
8.
J Sep Sci ; 35(2): 225-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-25939821

ABSTRACT

δ-[L-α-Aminoadipyl]-L-cysteinyl-D-valine (ACV) is a key intermediate in the biosynthesis pathway of penicillins and cephalosporins. Therefore, the accurate quantification of ACV is relevant, e.g. for kinetic studies on the production of these ß-lactam antibiotics. However, accurate quantification of ACV is a challenge, because it is an active thiol compound which, upon exposure to air, can easily react with other thiol compounds to form oxidized disulfides. We have found that, during exposure to air, the oxidation of ACV occurs both in aqueous standard solutions as well as in biological samples. Qualitative and quantitative determinations of ACV and the oxidized dimer bis-δ-[L-α-aminoadipyl]-L-cysteinyl-D-valine have been carried out using ion pair reversed-phase ultra high-performance liquid chromatography, hyphenated with tandem mass spectrometry (IP-RP-UPLC-MS/MS) as the analytical platform. We show that by application of tris(2-carboxy-ethyl)phosphine hydrochloride (TCEP) as the reducing reagent, the total amount of ACV can be determined, while using maleimide as derivatizing reagent enables to quantify the free reduced form only.


Subject(s)
Chromatography, High Pressure Liquid/methods , Oligopeptides/analysis , Penicillium chrysogenum/chemistry , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents/biosynthesis , Chromatography, Reverse-Phase/methods , Indicators and Reagents , Maleimides , Oligopeptides/chemistry , Oligopeptides/metabolism , Oxidation-Reduction , Penicillium chrysogenum/metabolism , Phosphines , beta-Lactams/metabolism
9.
Eukaryot Cell ; 11(2): 238-49, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22158714

ABSTRACT

The industrial production of penicillin G by Penicillium chrysogenum requires the supplementation of the growth medium with the side chain precursor phenylacetate. The growth of P. chrysogenum with phenylalanine as the sole nitrogen source resulted in the extracellular production of phenylacetate and penicillin G. To analyze this natural pathway for penicillin G production, chemostat cultures were switched to [U-(13)C]phenylalanine as the nitrogen source. The quantification and modeling of the dynamics of labeled metabolites indicated that phenylalanine was (i) incorporated in nascent protein, (ii) transaminated to phenylpyruvate and further converted by oxidation or by decarboxylation, and (iii) hydroxylated to tyrosine and subsequently metabolized via the homogentisate pathway. The involvement of the homogentisate pathway was supported by the comparative transcriptome analysis of P. chrysogenum cultures grown with phenylalanine and with (NH(4))(2)SO(4) as the nitrogen source. This transcriptome analysis also enabled the identification of two putative 2-oxo acid decarboxylase genes (Pc13g9300 and Pc18g01490). cDNAs of both genes were cloned and expressed in the 2-oxo-acid-decarboxylase-free Saccharomyces cerevisiae strain CEN.PK711-7C (pdc1 pdc5 pdc6Δ aro10Δ thi3Δ). The introduction of Pc13g09300 restored the growth of this S. cerevisiae mutant on glucose and phenylalanine, thereby demonstrating that Pc13g09300 encodes a dual-substrate pyruvate and phenylpyruvate decarboxylase, which plays a key role in an Ehrlich-type pathway for the production of phenylacetate in P. chrysogenum. These results provide a basis for the metabolic engineering of P. chrysogenum for the production of the penicillin G side chain precursor phenylacetate.


Subject(s)
Penicillin G/metabolism , Penicillium chrysogenum/metabolism , Phenylalanine/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Decarboxylation , Metabolic Engineering , Penicillium chrysogenum/enzymology , Phenylacetates/metabolism , Phenylpyruvic Acids/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...