Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 10(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38447212

ABSTRACT

The analysis of degradation in the presence of cell death and migration is a critical aspect of research in various biological fields, such as tissue engineering, regenerative medicine, and disease pathology. In present study, numerical study of degradation of scaffold were performed in present of cells, cell apoptosis and cell migration. A poly electrolyte complex (PEC) silk fibroin scaffold was used for degradation study. Degradation study in the presence of cells and migration were performed at fixed pH concentration 7.2. Similarly, degradation study of scaffold were performed at different pH cell apoptosis. A transient analysis of scaffold was evaluated in COMSOL 5.5 in presence of cryogenic temperature at different temperature gradient. The parameters; temperature, stress, strain tensor and deformation gradient associated with the degradation of polyelectrolyte complex scaffold were evaluated. Result shows that in both geometries minimum temperature had been achieved as 230.051 K at point P4 in series view and parallel view and at a point P3 for cell migration study for -5 k min-1and -1 k min-1, respectively. The maximum stress had been generated for 5.57 × 107N m-2for the temperature gradient of -2 K min-1at T cycle in the case of cell migration study. In contrast in series view the maximum stress 2.9 × 107 N m-2were observed at P4 which was higher as compare to P3. Similarly, for a parallel view, maximum stress (3.93 × 107 N m-2) was obtained for point P3. It had been observed that the maximum strain tensor 5.21 × 10-3, 5.15 × 10-3and 5.26 × 10-3was generated in series view at 230 k on a point P3 for - 1, -2 and -5 K min-1, respectively. Similarly, the maximum strain tensor 8.16 × 10-3, 8.09 × 10-3and 8.09 × 10-3was generated in parallel view at 230 k on a point P3 for -1, -2 and -5 K min-1, respectively. In the presence of cells, at a point P4 for temperature gradient of -1 and -2 K min-1, it had been closed to the scaffold wall, which had a different temperature profile than the point P3 and scaffold comes to the contact with the cells. The analysis of PEC scaffold degradation in the presence of cells, including cell apoptosis and migration, offers significant insights into the relationship between scaffold properties, cell behaviour, and tissue regeneration.


Subject(s)
Fibroins , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Fibroins/chemistry , Apoptosis , Cell Movement
2.
Micromachines (Basel) ; 14(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37763824

ABSTRACT

The viscosity of fluid plays a major role in the flow dynamics of microchannels. Viscous drag and shear forces are the primary tractions for microfluidic fluid flow. Capillary blood vessels with a few microns diameter are impacted by the rheology of blood flowing through their conduits. Hence, regenerated capillaries should be able to withstand such impacts. Consequently, there is a need to understand the flow physics of culture media through the lumen of the substrate as it is one of the vital promoting factors for vasculogenesis under optimal shear conditions at the endothelial lining of the regenerated vessel. Simultaneously, considering the diffusive role of capillaries for ion exchange with the surrounding tissue, capillaries have been found to reorient themselves in serpentine form for modulating the flow conditions while developing sustainable shear stress. In the current study, S-shaped (S1) and delta-shaped (S2) serpentine models of capillaries were considered to evaluate the shear stress distribution and the oscillatory shear index (OSI) and relative residual time (RRT) of the derivatives throughout the channel (due to the phenomena of near-wall stress fluctuation), along with the influence of culture media rheology on wall stress parameters. The non-Newtonian power-law formulation was implemented for defining rheological viscosity of the culture media. The flow actuation of the media was considered to be sinusoidal and physiological, realizing the pulsatile blood flow behavior in the circulatory network. A distinct difference in shear stress distributions was observed in both the serpentine models. The S1 model showed higher change in shear stress in comparison to the S2 model. Furthermore, the non-Newtonian viscosity formulation was found to produce more sustainable shear stress near the serpentine walls compared to the Newtonian formulation fluid, emphasizing the influence of rheology on stress generation. Further, cell viability improved in the bending regions of serpentine channels compared to the long run section of the same channel.

3.
Med Biol Eng Comput ; 61(10): 2543-2559, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37204590

ABSTRACT

The present work had evaluated the effect of cryogenic treatment (233 K) on the degradation of polymeric biomaterial using a numerical model. The study on effect of cryogenic temperature on mechanical properties of cell-seeded biomaterials is very limited. However, no study had reported material degradation evaluation. Different structures of silk-fibroin-poly-electrolyte complex (SFPEC) scaffolds had been designed by varying hole distance and hole diameter, with reference to existing literature. The size of scaffolds were maintained at 5 [Formula: see text] 5 mm2. Current study evaluates the effect of cryogenic temperature on mechanical properties (corelated to degradation) of scaffold. Six parameters related to scaffold degradation: heat transfer, deformation gradient, stress, strain, strain tensor, and displacement gradient were analyzed for three different cooling rates (- 5 K/min, - 2 K/min, and - 1 K/min). Scaffold degradation had been evaluated in the presence of water and four different concentrations of cryoprotectant solution. Heat distribution at various points (points_base, point_wall and point_core) on the region of interest (ROI) was found similar for different cooling rates of the system. Thermal stress was found developing proportional to cooling rate, which leads to minimal variation in thermal stress over time. Strain tensor was found gradually decreasing due to attenuating response of deformation gradient. In addition to that, dipping down of cryogenic temperature had prohibited the movement of molecules in the crystalline structure which had restricting the displacement gradient. It was found that uniform distribution of desired heat at different cooling rates has the ability to minimize the responses of other scaffold degradation parameters. It was found that the rates of change in stress, strain, and strain tensor were minimal at different concentrations of cryoprotectant. The present study had predicted the degradation behavior of PEC scaffold under cryogenic temperature on the basis of explicit mechanical properties.


Subject(s)
Hot Temperature , Tissue Scaffolds , Tissue Scaffolds/chemistry , Porosity , Biocompatible Materials , Temperature , Tissue Engineering
4.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296119

ABSTRACT

3D bioprinting has emerged as a tool for developing in vitro tissue models for studying disease progression and drug development. The objective of the current study was to evaluate the influence of flow driven shear stress on the viability of cultured cells inside the luminal wall of a serpentine network. Fluid-structure interaction was modeled using COMSOL Multiphysics for representing the elasticity of the serpentine wall. Experimental analysis of the serpentine model was performed on the basis of a desirable inlet flow boundary condition for which the most homogeneously distributed wall shear stress had been obtained from numerical study. A blend of Gelatin-methacryloyl (GelMA) and PEGDA200 PhotoInk was used as a bioink for printing the serpentine network, while facilitating cell growth within the pores of the gelatin substrate. Human umbilical vein endothelial cells were seeded into the channels of the network to simulate the blood vessels. A Live-Dead assay was performed over a period of 14 days to observe the cellular viability in the printed vascular channels. It was observed that cell viability increases when the seeded cells were exposed to the evenly distributed shear stresses at an input flow rate of 4.62 mm/min of the culture media, similar to that predicted in the numerical model with the same inlet boundary condition. It leads to recruitment of a large number of focal adhesion point nodes on cellular membrane, emphasizing the influence of such phenomena on promoting cellular morphologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...