Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 55(1): 235-244, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38150151

ABSTRACT

Cordyceps militaris is a fungus with numerous therapeutic properties that has gained worldwide popularity due to its potential health benefits. The fruiting body of this mushroom is highly expensive and takes a longer time to produce, making mycelial a sustainable and cost-effective alternative. The study investigates and optimizes cultural and nutritional conditions to maximize mycelial biomass. The initial optimization was done by the conventional single-factor approach, followed by Plackett-Burman design to screen the most significant variables, with yeast extract, temperature, and glucose being the most significant, contributing 11.58%, 49.74%, and 27.98%, respectively, in mycelial biomass production. These variables were then optimized using response surface methodology (RSM) based on central composite design (CCD). The study observed that temperature and glucose had the highest impact on mycelial biomass, with p-values of 0.0128 and 0.0191, respectively. Under the optimized conditions, temperature 20 °C, glucose 2.5% (w/v), and yeast extract 0.8% (w/v), the maximal yield of mycelial biomass reached 547 ± 2.09 mg/100 mL, which was 1.95-fold higher than the yield in the basal medium. These findings suggest that optimizing the cultural and nutritional conditions can enhance mycelial biomass production of Cordyceps militaris, offering a sustainable and cost-effective source of this valuable fungus.


Subject(s)
Cordyceps , Nitrogen , Carbon , Biomass , Glucose
2.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37325819

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a result of a retroviral infection of SARS-CoV-2. Due to its virulence and high infection rate, it is a matter of serious concern and a global health emergency. Currently available COVID-19 vaccines approved by regulatory bodies around the world have been shown to provide significant protection against COVID-19. But no vaccine is 100% effective at preventing infection, also they have varying efficacy rates and different side effects. However, the main protease (Mpro) of SARS-CoV-2 has been identified as a key drug target due to its essential role in viral infection and its minimal similarity with human proteases. Cordyceps mushrooms have been found to have various therapeutic properties that could effectively combat SARS-CoV-2, including improve lung functioning, anti-viral, immunomodulators, anti-infectious, and anti-inflammatory. The present study aims to screen and evaluate the inhibitory potential of the bioactive molecules from the Cordyceps species against the Mpro of SARS-CoV-2. The bioactive molecules were screened based on their docking score, molecular interactions in the binding pocket, ADME properties, toxicity, carcinogenicity, and mutagenicity. Among all the molecules that were tested, cordycepic acid was the most effective and promising candidate, with a binding affinity of -8.10 kcal/mol against Mpro. The molecular dynamics (MD) simulation and free binding energy calculations revealed that the cordycepic acid-Mpro complex was highly stable and showed fewer conformational fluctuations. These findings need to be investigated further through in-vitro and in-vivo studies for additional validation.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...