Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 902: 166079, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37553053

ABSTRACT

Changes in soil microbial communities may impact soil fertility and stability because microbial communities are key to soil functioning by supporting soil ecological quality and agricultural production. The effects of soil amendment with biochar on soil microbial communities are widely documented but studies highlighted a high degree of variability in their responses following biochar application. The multiple conditions under which they were conducted (experimental designs, application rates, soil types, biochar properties) make it difficult to identify general trends. This supports the need to better determine the conditions of biochar production and application that promote soil microbial communities. In this context, we performed the first ever meta-analysis of the biochar effects on soil microbial biomass and diversity (prokaryotes and fungi) based on high-throughput sequencing data. The majority of the 181 selected publications were conducted in China and evaluated the short-term impact (<3 months) of biochar. We demonstrated that a large panel of variables corresponding to biochar properties, soil characteristics, farming practices or experimental conditions, can affect the effects of biochar on soil microbial characteristics. Using a variance partitioning approach, we showed that responses of soil microbial biomass and prokaryotic diversity were highly dependent on biochar properties. They were influenced by pyrolysis temperature, biochar pH, application rate and feedstock type, as wood-derived biochars have particular physico-chemical properties (high C:N ratio, low nutrient content, large pores size) compared to non-wood-derived biochars. Fungal community data was more heterogenous and scarcer than prokaryote data (30 publications). Fungal diversity indices were rather dependent on soil properties: they were higher in medium-textured soils, with low pH but high soil organic carbon. Altogether, this meta-analysis illustrates the need for long-term field studies in European agricultural context for documenting responses of soil microbial communities to biochar application under diverse conditions combining biochar types, soil properties and conditions of use.


Subject(s)
Carbon , Microbiota , Soil/chemistry , Soil Microbiology , Charcoal/chemistry
2.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499662

ABSTRACT

To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown. The acrostyle, a cuticular organ located at the tip of maxillary stylets that transiently binds plant viruses via its stylin proteins, may participate in this specific delivery process. Here, we demonstrate that Mp10, a saliva effector released into the plant cytoplasm during aphid probing, binds to the acrostyles of Acyrthosiphon pisum and Myzus persicae. The effector probably interacts with Stylin-03 as a lowered Mp10-binding to the acrostyle was observed upon RNAi-mediated reduction in Stylin-03 production. In addition, Stylin-03 and Stylin-01 RNAi aphids exhibited changes in their feeding behavior as evidenced by electrical penetration graph experiments showing longer aphid probing behaviors associated with watery saliva release into the cytoplasm of plant cells. Taken together, these data demonstrate that the acrostyle also has effector binding capacity and supports its role in the delivery of aphid effectors into plant cells.


Subject(s)
Aphids , Plant Viruses , Animals , Aphids/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Plant Viruses/metabolism , Plants/metabolism
3.
J Proteome Res ; 19(3): 1319-1337, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31991085

ABSTRACT

Aphids are phloem-feeding insects known as major pests in agriculture that are able to transmit hundreds of plant viruses. The majority of these viruses, classified as noncirculative, are retained and transported on the inner surface of the cuticle of the needle-like mouthparts while the aphids move from plant to plant. Identification of receptors of viruses within insect vectors is a key challenge because they are promising targets for alternative control strategies. The acrostyle, an organ discovered earlier within the common food/salivary canal at the tip of aphid maxillary stylets, displays proteins at the cuticle-fluid interface, some of which are receptors of noncirculative viruses. To assess the presence of stylet- and acrostyle-specific proteins and identify putative receptors, we have developed a comprehensive comparative analysis of the proteomes of four cuticular anatomical structures of the pea aphid, stylets, antennae, legs, and wings. In addition, we performed systematic immunolabeling detection of the cuticular proteins identified by mass spectrometry in dissected stylets. We thereby establish the first proteome of stylets of an insect and determine the minimal repertoire of the cuticular proteins composing the acrostyle. Most importantly, we propose a short list of plant virus receptor candidates, among which RR-1 proteins are remarkably predominant. The data are available via ProteomeXchange (PXD016517).


Subject(s)
Aphids , Plant Viruses , Animals , Insect Proteins/genetics , Pisum sativum , Plant Viruses/genetics , Proteomics , Receptors, Virus
4.
Curr Opin Virol ; 33: 137-143, 2018 12.
Article in English | MEDLINE | ID: mdl-30245214

ABSTRACT

Many viruses of agricultural importance are transmitted to host plants via insect vectors. Characterizing virus-vector interactions at the molecular level is essential if we are to fully understand the transmission mechanisms involved and develop new strategies to control viral spread. Hitherto, insect proteins involved in virus transmission have been characterized only poorly. Recent advances in this topic, however, have significantly filled this knowledge gap. Among the vector molecules identified, cuticular proteins have emerged as key molecules for plant virus transmission, regardless of transmission mode or vector considered. Here, we review recent evidence highlighting that the CPR family, and particularly RR-1 proteins, undoubtedly deserves special attention.


Subject(s)
Insect Proteins/metabolism , Insect Vectors/virology , Plant Viruses/isolation & purification , Plant Viruses/physiology , Virus Attachment , Animals , Host-Pathogen Interactions , Insect Vectors/physiology
5.
J Virol ; 92(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29769332

ABSTRACT

Plant viruses transmitted by insects cause tremendous losses in most important crops around the world. The identification of receptors of plant viruses within their insect vectors is a key challenge to understanding the mechanisms of transmission and offers an avenue for future alternative control strategies to limit viral spread. We here report the identification of two cuticular proteins within aphid mouthparts, and we provide experimental support for the role of one of them in the transmission of a noncirculative virus. These two proteins, named Stylin-01 and Stylin-02, belong to the RR-1 cuticular protein subfamily and are highly conserved among aphid species. Using an immunolabeling approach, they were localized in the maxillary stylets of the pea aphid Acyrthosiphon pisum and the green peach aphid Myzus persicae, in the acrostyle, an organ earlier shown to harbor receptors of a noncirculative virus. A peptide motif present at the C termini of both Stylin-01 and Stylin-02 is readily accessible all over the surface of the acrostyle. Competition for in vitro binding to the acrostyle was observed between an antibody targeting this peptide and the helper component protein P2 of Cauliflower mosaic virus Furthermore, silencing the stylin-01 but not stylin-02 gene through RNA interference decreased the efficiency of Cauliflower mosaic virus transmission by Myzus persicae These results identify the first cuticular proteins ever reported within arthropod mouthparts and distinguish Stylin-01 as the best candidate receptor for the aphid transmission of noncirculative plant viruses.IMPORTANCE Most noncirculative plant viruses transmitted by insect vectors bind to their mouthparts. They are acquired and inoculated within seconds when insects hop from plant to plant. The receptors involved remain totally elusive due to a long-standing technical bottleneck in working with insect cuticle. Here we characterize the role of the two first cuticular proteins ever identified in arthropod mouthparts. A domain of these proteins is directly accessible at the surface of the cuticle of the acrostyle, an organ at the tip of aphid stylets. The acrostyle has been shown to bind a plant virus, and we consistently demonstrated that one of the identified proteins is involved in viral transmission. Our findings provide an approach to identify proteins in insect mouthparts and point at an unprecedented gene candidate for a plant virus receptor.


Subject(s)
Plant Viruses/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Animals , Aphids/metabolism , Aphids/virology , Brassica/virology , Conserved Sequence , Evolution, Molecular , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Vectors/virology , Multigene Family , Pisum sativum/virology , Prunus persica/virology
6.
Virology ; 493: 142-53, 2016 06.
Article in English | MEDLINE | ID: mdl-27038709

ABSTRACT

Little is known about the prevalence, diversity, evolutionary processes, genomic structures and population dynamics of viruses in the divergent geminivirus lineage known as the capulaviruses. We determined and analyzed full genome sequences of 13 Euphorbia caput-medusae latent virus (EcmLV) and 26 Alfalfa leaf curl virus (ALCV) isolates, and partial genome sequences of 23 EcmLV and 37 ALCV isolates. While EcmLV was asymptomatic in uncultivated southern African Euphorbia caput-medusae, severe alfalfa disease symptoms were associated with ALCV in southern France. The prevalence of both viruses exceeded 10% in their respective hosts. Besides using patterns of detectable negative selection to identify ORFs that are probably functionally expressed, we show that ALCV and EcmLV both display evidence of inter-species recombination and biologically functional genomic secondary structures. Finally, we show that whereas the EcmLV populations likely experience restricted geographical dispersion, ALCV is probably freely moving across the French Mediterranean region.


Subject(s)
Euphorbia/virology , Geminiviridae/isolation & purification , Medicago sativa/virology , DNA, Viral , Ecosystem , France , Geminiviridae/classification , Geminiviridae/genetics , Geminiviridae/physiology , Genome, Viral , Nucleic Acid Conformation , Open Reading Frames , Phylogeny , Plant Diseases/virology , Recombination, Genetic , Sequence Analysis, DNA , South Africa , Virus Latency
7.
J Virol ; 89(18): 9683-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26109720

ABSTRACT

The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus.


Subject(s)
Aphids/virology , Geminiviridae/physiology , Geminiviridae/ultrastructure , Plant Diseases/virology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...