Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 142: 171-185, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28756304

ABSTRACT

Tumors undergo periods of dormancy followed by reactivation leading to metastatic disease. Arrest in the G0/G1 phase of the cell cycle and resistance to chemotherapeutic drugs are key hallmarks of dormant tumor cells. Here, we describe a 3D platform of bladder cancer cell dormancy and reactivation facilitated by a novel aminoglycoside-derived hydrogel, Amikagel. These 3D dormant tumor microenvironments (3D-DTMs) were arrested in the G0/G1 phase and were highly resistant to anti-proliferative drugs. Inhibition of targets in the cellular protein production machinery led to induction of endoplasmic reticulum (ER) stress and complete ablation of 3D-DTMs. Nanoparticle-mediated calcium delivery significantly accelerated ER stress-mediated 3D-DTM death. Transfer of 3D-DTMs onto weaker and adhesive Amikagels resulted in selective reactivation of a sub-population of N-cadherin deficient cells from dormancy. Whole-transcriptome analyses further indicated key biochemical differences between dormant and proliferative cancer cells. Taken together, our results indicate that 3D bladder cancer microenvironments of dormancy and reactivation can facilitate fundamental advances and novel drug discovery in cancer.


Subject(s)
Mechanical Phenomena , Tissue Engineering/methods , Tumor Microenvironment , Urinary Bladder Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcium/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Docetaxel , Drug Resistance, Neoplasm/drug effects , Endoplasmic Reticulum Stress/drug effects , Humans , Neoplasm Micrometastasis , Protein Biosynthesis/drug effects , Taxoids/pharmacology , Taxoids/therapeutic use , Tumor Microenvironment/drug effects , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...