Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37765673

ABSTRACT

Poly(ε-caprolactone) (PCL) is a hydrophobic, resorbable aliphatic polymer recognized for its low tenacity and extensive elongation at break, making it a popular choice for fabricating biodegradable tissue engineering scaffolds. PCL's slow degradation rate typically results in a complete resorption period of 2 to 3 years. While numerous studies have examined the degradation of PCL in various forms such as films and webs, no study to date has investigated its physiological degradation in multifilament yarn form. In this study, we subjected PCL multifilament yarn samples to physiological conditions in phosphate-buffered saline (PBS) maintained at a consistent temperature of 37 ± 2 °C and agitated at 45 rpm for a period of 32 weeks. We retrieved samples at five different intervals to analyze the degradation profile of the multifilament yarn. This allowed us to estimate the complete resorption time and rate under these in vitro conditions. Over the 32-week period, the multifilament yarn's mass decreased by 4.8%, its elongation at break declined by 42%, the tenacity dropped by 40%, and the peak load at break fell by 46.5%. Based on these findings, we predict that a scaffold structure incorporating PCL multifilament yarn would undergo complete resorption in approximately 14 months under physiological conditions, such as in PBS solution at a pH of approximately 7 and a temperature of 37 °C.

2.
Bioengineering (Basel) ; 7(4)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114301

ABSTRACT

Craniofacial microsomia is a congenital deformity caused by asymmetric development of the skull (cranium) and face before birth. Current treatments include corrective surgery and replacement of the deformed structure using autograft tissue, which results in donor site morbidity. An alternative therapy can be achieved by developing a resorbable scaffold for skeletal muscle regeneration which will help restore the symmetry and function of the facial muscles and reduce donor site morbidity. Two resorbable weft knitted scaffolds were fabricated using poly(ε-caprolactone) multifilament yarns with unique auxetic design structures possessing negative Poisson's ratio (NPR). These scaffolds exhibit their NPR elasticity through an increase in total volume as well as no lateral narrowing when stretched longitudinally, which can provide orientated mechanical supports to the cell growth of skeletal muscle regeneration. These scaffolds were evaluated for the required physical properties, mechanical performance and biocompatibility by culturing them with neonatal human dermal fibroblasts so as to determine their cell metabolic activity, cell attachment and proliferation. This study can facilitate the understanding and engineering of textile-based scaffolds for tissues/organs. The work also paves a pathway to emerge the NPR textiles into tissue engineering, which has an extensive potential for biomedical end-uses.

SELECTION OF CITATIONS
SEARCH DETAIL
...