Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Pharm ; 645: 123386, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37678475

ABSTRACT

Phloretin (PHL), a flavonoid of the dihydrogen chalcone class, is reported to have low oral bioavailability due to its poor solubility and absorption. A common approach to enhance the solubility of such flavonoids is solubilization in a polymeric or lipidic matrix which would help in enhance dissolution rate and solubility. Accordingly, in the current study PHL was dissolved in Gelucire® 44/14 by melt-fusion technique and the viscous semisolid melt was adsorbed on a solid carrier to obtain free flowing granules. SeDeM-SLA (Solid-Liquid Adsorption) expert system was employed to select the most suitable carrier. This study achieved positive outcomes through the successful development of formulated oral PHL granules. The granules exhibited good stability, and favourable pharmacokinetic properties. In addition, the selected carrier effectively retained the antioxidant properties of PHL.

2.
Cell Mol Neurobiol ; 43(7): 3099-3113, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37219664

ABSTRACT

STEP (STriatal-Enriched Protein Tyrosine Phosphatase) is a brain-specific phosphatase that plays an important role in controlling signaling molecules involved in neuronal activity and synaptic development. The striatum is the main location of the STEP enzyme. An imbalance in STEP61 activity is a risk factor for Alzheimer's disease (AD). It can contribute to the development of numerous neuropsychiatric diseases, including Parkinson's disease (PD), schizophrenia, fragile X syndrome (FXS), Huntington's disease (HD), alcoholism, cerebral ischemia, and stress-related diseases. The molecular structure, chemistry, and molecular mechanisms associated with STEP61's two major substrates, Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAr) and N-methyl-D-aspartate receptors (NMDARs), are crucial in understanding the relationship between STEP61 and associated illnesses. STEP's interactions with its substrate proteins can alter the pathways of long-term potentiation and long-term depression. Therefore, understanding the role of STEP61 in neurological illnesses, particularly Alzheimer's disease-associated dementia, can provide valuable insights for possible therapeutic interventions. This review provides valuable insights into the molecular structure, chemistry, and molecular mechanisms associated with STEP61. This brain-specific phosphatase controls signaling molecules involved in neuronal activity and synaptic development. This review can aid researchers in gaining deep insights into the complex functions of STEP61.


Subject(s)
Alzheimer Disease , Humans , Signal Transduction/physiology , Neuronal Plasticity , Long-Term Potentiation , Phosphoric Monoester Hydrolases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Xenobiotica ; 48(12): 1206-1214, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29165024

ABSTRACT

1. Budesonide, a potent topical corticosteroid, reported to have low oral bioavailability in mice, rat, dog and human due to rapid first pass metabolism. However, there is insufficient information available in literature regarding the role of intestine and or liver responsible for the first pass metabolism of budesonide. 2. Current study in rats investigates the role of intestine and liver in first pass metabolism of budesonide using two in vivo models. Additionally, budesonide was also evaluated in in vitro assays such as thermodynamic solubility, permeability in Caco-2 cells and stability in simulated gastric (SGF), intestinal fluids (SIF) to understand the underlaying cause for low oral bioavailability. 3. Budesonide showed low oral, intra-duodenal and high intra-portal bioavailability in rat. In a dual vein cannulated rat model, intestinal and hepatic extraction ratios calculated based upon intestinal availability (Fa·Fg) and hepatic availability (Fh), suggests hepatic extraction of budesonide is minimal compared to intestinal. 4. In vitro results suggest, solubility and permeability may not be a barrier for the observed low oral bioavailability in rats. 5. Correlating the in vitro and in vivo data together, it can be concluded that, intestine might be playing major role in first pass metabolism of budesonide.


Subject(s)
Budesonide/pharmacology , Budesonide/pharmacokinetics , Intestinal Mucosa/metabolism , Liver/metabolism , Animals , Caco-2 Cells , Humans , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...