Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1396116, 2024.
Article in English | MEDLINE | ID: mdl-39040911

ABSTRACT

Veterinary medications are constantly being used for the diagnosis, treatment, and prevention of diseases in livestock. However, untreated veterinary drug active compounds are interminably discharged into numerous water bodies and terrestrial ecosystems, during production procedures, improper disposal of empty containers, unused medication or animal feed, and treatment procedures. This exhaustive review describes the different pathways through which veterinary medications enter the environment, discussing the role of agricultural practices and improper disposal methods. The detrimental effects of veterinary drug compounds on aquatic and terrestrial ecosystems are elaborated with examples of specific veterinary drugs and their known impacts. This review also aims to detail the mechanisms by which microbes degrade veterinary drug compounds as well as highlighting successful case studies and recent advancements in microbe-based bioremediation. It also elaborates on microbial electrochemical technologies as an eco-friendly solution for removing pharmaceutical pollutants from wastewater. Lastly, we have summarized potential innovations and challenges in implementing bioremediation on a large scale under the section prospects and advancements in this field.

2.
Cell Biol Int ; 38(7): 809-17, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24523249

ABSTRACT

Tumour suppressor genes restrain inappropriate cell growth and division, as well as stimulate cell death to maintain tissue homeostasis. Loss of function leads to abnormal cellular behaviour, including hyperproliferation of cell and perturbation of cell cycle regulation. LIMD1 is a tumour suppressor gene located at chromosome 3p21.3, a region commonly deleted in many solid malignancies. LIMD1 interacts with retinoblastoma (Rb) and is involved in Rb-mediated downregulation of E2F1-target genes. However, the role of LIMD1 in cell cycle regulation remains unclear. We propose that LIMD1 induces cell cycle arrest, utilising Rb-E2F1 axis, and show that ectopic expression of LIMD1 in A549 cells results in hypo-phosphorylation that potentiates Rb function, which correlates with downregulation of E2F1. In agreement with these observations, LIMD1 overexpression retards cell cycle progression and blocks S-phase entry, as cells accumulate in G0/G1 phase and have reduced incorporation of BrdU. Most significantly, LIMD1-dependent effects on Rb function and cell cycle are reversed on depletion of endogenous LIMD1, underscoring its centrality in Rb-mediated cell cycle regulation. Hence, our findings provide new insight into cell cycle control by Rb-LIMD1 nexus.


Subject(s)
E2F1 Transcription Factor/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Retinoblastoma Protein/metabolism , Cell Line, Tumor , Down-Regulation , E2F1 Transcription Factor/antagonists & inhibitors , G1 Phase Cell Cycle Checkpoints , Humans , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Phosphorylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...