Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Front Neurosci ; 18: 1258996, 2024.
Article in English | MEDLINE | ID: mdl-38469573

ABSTRACT

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion: Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

2.
Alzheimers Dement (Amst) ; 15(4): e12482, 2023.
Article in English | MEDLINE | ID: mdl-37780862

ABSTRACT

Early-onset Alzheimer's disease (AD) is highly heritable, yet only 10% of cases are associated with known pathogenic mutations. For early-onset AD patients without an identified autosomal dominant cause, we hypothesized that their early-onset disease reflects further enrichment of the common risk-conferring single nucleotide polymorphisms associated with late-onset AD. We applied a previously validated polygenic hazard score for late-onset AD to 193 consecutive patients diagnosed at our tertiary dementia referral center with symptomatic early-onset AD. For comparison, we included 179 participants with late-onset AD and 70 healthy controls. Polygenic hazard scores were similar in early- versus late-onset AD. The polygenic hazard score was not associated with age-of-onset or disease biomarkers within early-onset AD. Early-onset AD does not represent an extreme enrichment of the common single nucleotide polymorphisms associated with late-onset AD. Further exploration of novel genetic risk factors of this highly heritable disease is warranted.Highlights: There is a unique genetic architecture of early- versus late-onset Alzheimer's disease (AD).Late-onset AD polygenic risk is not an explanation for early-onset AD.Polygenic risk of late-onset AD does not predict early-onset AD biology.Unique genetic architecture of early- versus late-onset AD parallels AD heterogeneity.

3.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37503230

ABSTRACT

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, cerebellum) with average gene expression values for 15,633 protein-coding genes, including 50 genes known to be associated with ALS, FTD, or ALS-FTD. We then evaluated whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n=19). Lastly, we explored whether genes with significant C9orf72 radiogenomic correlations (i.e., 'C9orf72 gene network') were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 1,748 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 gene network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic motor neurons in the spinal cord, and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with multiple neurotransmitter systems, protein ubiquitination, autophagy, and MAPK signaling, among others. Conclusions: Considered together, we identified a network of C9orf72-associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

4.
Ann Clin Transl Neurol ; 10(4): 536-552, 2023 04.
Article in English | MEDLINE | ID: mdl-36744645

ABSTRACT

OBJECTIVE: We explored the relationship between regional PRNP expression from healthy brain tissue and patterns of increased and decreased diffusion and regional brain atrophy in patients with sporadic Creutzfeldt-Jakob disease (sCJD). METHODS: We used PRNP microarray data from 6 healthy adult brains from Allen Brain Institute and T1-weighted and diffusion-weighted MRIs from 34 patients diagnosed with sCJD and 30 age- and sex-matched healthy controls to construct partial correlation matrices across brain regions for specific measures of interest: PRNP expression, mean diffusivity, volume, cortical thickness, and local gyrification index, a measure of cortical folding. RESULTS: Regional patterns of PRNP expression in the healthy brain correlated with regional patterns of diffusion signal abnormalities and atrophy in sCJD. Among different measures of cortical morphology, regional patterns of local gyrification index in sCJD most strongly correlated with regional patterns of PRNP expression. At the vertex-wise level, different molecular subtypes of sCJD showed distinct regional correlations in local gyrification index across the cortex. Local gyrification index correlation patterns most closely matched patterns of PRNP expression in sCJD subtypes known to have greatest pathologic involvement of the cerebral cortex. INTERPRETATION: These results suggest that the specific genetic and molecular environment in which the prion protein is expressed confer variable vulnerability to misfolding across different brain regions that is reflected in patterns of imaging findings in sCJD. Further work in larger samples will be needed to determine whether these regional imaging patterns can serve as reliable markers of distinct disease subtypes to improve diagnosis and treatment targeting.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Adult , Humans , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/genetics , Brain/diagnostic imaging , Brain/pathology , Prion Proteins/genetics
5.
BMC Neurol ; 21(1): 412, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34706674

ABSTRACT

BACKGROUND: Anti-NMDA receptor encephalitis is an immune-mediated disorder characterized by antibodies against the GluN1 subunit of the NMDA receptor that is increasingly recognized as a treatable cause of childhood epileptic encephalopathy. In adults, the disorder has been associated with reversible changes in brain volume over the course of treatment and recovery, but in children, little is known about its time course and associated imaging manifestations. CASE PRESENTATION: A previously healthy 20-month-old boy presented with first-time unprovoked seizures, dysautonomia, and dyskinesia. Paraneoplastic workup was negative, but CSF was positive for anti-NMDAR antibodies. The patient's clinical condition waxed and waned over a 14-month course of treatment with first- and second-line immunotherapies (including steroids, IVIG, rituximab, and cyclophosphamide). Serial brain MRIs scans obtained at 5 time points spanning this same period showed no abnormal signal or enhancement but were remarkable for cycles of reversible regional cortical volume loss. All scans included identical 1-mm resolution 3D T1-weighted sequences obtained on the same 3 T scanner. Using a novel longitudinal processing stream in FreeSurfer6 (Reuter M, et. al, Neuroimage 61:1402-18, 2012) we quantified the rate of change in cortical volume at each vertex (% volume change per month) between consecutive scans and correlated these changes with the time course of the patient's treatment and clinical response. We found regionally specific changes in cortical volume (up to 7% per month) that preferentially affected the frontal and occipital lobes and paralleled the patient's clinical course, with clinical decline associated with volume loss and clinical improvement associated with volume gain. CONCLUSIONS: Our results suggest that reversible cortical volume loss in anti-NMDA encephalitis has a regional specificity that mirrors many of the clinical symptoms associated with the disorder and tracks the dynamics of disease severity over time. This case illustrates how quantitative morphometric techniques can be applied to clinical imaging data to reveal patterns of brain change that may provide insight into disease pathophysiology. More widespread application of this approach might reveal regional and temporal patterns specific to different types of autoimmune encephalitis, providing a tool for diagnosis and a surrogate marker for monitoring treatment response.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnostic imaging , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Autoantibodies , Brain/diagnostic imaging , Humans , Infant , Magnetic Resonance Imaging , Male , Receptors, N-Methyl-D-Aspartate
7.
Genetics ; 217(3)2021 03 31.
Article in English | MEDLINE | ID: mdl-33789345

ABSTRACT

We propose an extended Gaussian mixture model for the distribution of causal effects of common single nucleotide polymorphisms (SNPs) for human complex phenotypes that depends on linkage disequilibrium (LD) and heterozygosity (H), while also allowing for independent components for small and large effects. Using a precise methodology showing how genome-wide association studies (GWASs) summary statistics (z-scores) arise through LD with underlying causal SNPs, we applied the model to GWAS of multiple human phenotypes. Our findings indicated that causal effects are distributed with dependence on total LD and H, whereby SNPs with lower total LD and H are more likely to be causal with larger effects; this dependence is consistent with models of the influence of negative pressure from natural selection. Compared with the basic Gaussian mixture model it is built on, the extended model-primarily through quantification of selection pressure-reproduces with greater accuracy the empirical distributions of z-scores, thus providing better estimates of genetic quantities, such as polygenicity and heritability, that arise from the distribution of causal effects.


Subject(s)
Heterozygote , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Humans , Models, Genetic , Phenotype
8.
Biol Psychiatry ; 89(3): 227-235, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32201043

ABSTRACT

BACKGROUND: Parkinson's disease (PD) and schizophrenia (SCZ) are heritable brain disorders that involve dysregulation of the dopaminergic system. Epidemiological studies have reported potential comorbidity between the disorders, and movement disturbances are common in patients with SCZ before treatment with antipsychotic drugs. Despite this, little is known about shared genetic etiology between the disorders. METHODS: We analyzed recent large genome-wide association studies on patients with SCZ (N = 77,096) and PD (N = 417,508) using a conditional/conjunctional false discovery rate (FDR) approach to evaluate overlap in common genetic variants and improve statistical power for genetic discovery. Using a variety of biological resources, we functionally characterized the identified genomic loci. RESULTS: We observed genetic enrichment in PD conditional on associations with SCZ and vice versa, indicating polygenic overlap. We then leveraged this cross-trait enrichment using conditional FDR analysis and identified 9 novel PD risk loci and 1 novel SCZ locus at conditional FDR < .01. Furthermore, we identified 9 genomic loci jointly associated with PD and SCZ at conjunctional FDR < .05. There was an even distribution of antagonistic and agonistic effect directions among the shared loci, in line with the insignificant genetic correlation between the disorders. Of 67 genes mapped to the shared loci, 65 are expressed in the human brain and show cell type-specific expression profiles. CONCLUSIONS: Altogether, the study increases understanding of the genetic architectures underlying SCZ and PD, indicating that common molecular genetic mechanisms may contribute to overlapping pathophysiological and clinical features between the disorders.


Subject(s)
Parkinson Disease , Schizophrenia , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics
9.
Brain ; 143(7): 2272-2280, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32591829

ABSTRACT

Sex differences in the manifestations of Alzheimer's disease are under intense investigation. Despite the emerging importance of polygenic predictions for Alzheimer's disease, sex-dependent polygenic effects have not been demonstrated. Here, using a sex crossover analysis, we show that sex-dependent autosomal genetic effects on Alzheimer's disease can be revealed by characterizing disease progress via the hazard function. We first performed sex-stratified genome-wide associations, and then applied derived sex-dependent weights to two independent cohorts. Relative to sex-mismatched scores, sex-matched polygenic hazard scores showed significantly stronger associations with age-at-disease-onset, clinical progression, amyloid deposition, neurofibrillary tangles, and composite neuropathological scores, independent of apolipoprotein E. Models without using hazard weights, i.e. polygenic risk scores, showed lower predictive power than polygenic hazard scores with no evidence for sex differences. Our results indicate that revealing sex-dependent genetic architecture requires the consideration of temporal processes of Alzheimer's disease. This has strong implications not only for the genetic underpinning of Alzheimer's disease but also for how we estimate sex-dependent polygenic effects for clinical use.


Subject(s)
Alzheimer Disease/genetics , Multifactorial Inheritance/genetics , Sex Characteristics , Aged , Disease Progression , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
10.
PLoS Genet ; 16(5): e1008612, 2020 05.
Article in English | MEDLINE | ID: mdl-32427991

ABSTRACT

Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from a reference panel of 11 million SNPs, to estimate these quantities from genome-wide association studies (GWAS) summary statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities (as a fraction of the reference panel) ranging from ≃ 2 × 10-5 to ≃ 4 × 10-3, with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of z-scores), and assessing compatibility of replication and discovery GWAS summary statistics.


Subject(s)
Genetic Association Studies , Genetic Heterogeneity , Inheritance Patterns/physiology , Models, Genetic , Polymorphism, Single Nucleotide , Computer Simulation , Genetic Association Studies/methods , Genetic Association Studies/statistics & numerical data , Genetics, Population , Genome-Wide Association Study/methods , Genome-Wide Association Study/statistics & numerical data , Heterozygote , Humans , Linkage Disequilibrium , Multifactorial Inheritance , Normal Distribution , Phenotype , Quantitative Trait, Heritable
13.
Sci Rep ; 9(1): 10854, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350420

ABSTRACT

The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA's relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration.


Subject(s)
Apoptosis/genetics , Gene Regulatory Networks , Polymorphism, Single Nucleotide , Primary Progressive Nonfluent Aphasia/genetics , RNA/metabolism , Cohort Studies , DNA-Binding Proteins/genetics , Databases, Genetic , Gene Expression Regulation , Genome-Wide Association Study , Humans , Protein Interaction Maps/genetics , Risk Factors , Transcription, Genetic
14.
Br J Radiol ; 92(1101): 20190093, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31294609

ABSTRACT

What is the future of neuroradiology in the era of precision medicine? As with any big change, this transformation in medicine presents both challenges and opportunities, and to flourish in this new environment we will have to adapt. It is difficult to predict exactly how neuroradiology will evolve in this shifting landscape, but there will be changes in both what we image and what we do. In terms of imaging, we will need to move beyond simply imaging brain anatomy and toward imaging function, both at the molecular and circuit level. In terms of what we do, we will need to move from the periphery of the clinical enterprise toward its center, with a new emphasis on integrating imaging with genetic and clinical data to form a comprehensive picture of the patient that can be used to direct further testing and care.The payoff is that these changes will align neuroradiology with the emerging field of precision psychiatry, which promises to replace symptom-based diagnosis and trial-and-error treatment of psychiatric disorders with diagnoses based on quantifiable genetic, imaging, physiologic, and behavioural criteria and therapies targeted to the particular pathophysiology of individual patients. Here we review some of the recent developments in behavioural genetics and neuroscience that are laying the foundation for precision psychiatry. By no means comprehensive, our goal is to introduce some of the perspectives and techniques that are likely to be relevant to the precision neuroradiologist of the future.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Diagnostic Imaging/methods , Mental Disorders/diagnosis , Mental Disorders/pathology , Precision Medicine/methods , Humans
15.
Sci Rep ; 9(1): 7013, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31065058

ABSTRACT

Dementia with Lewy Bodies (DLB) is a common neurodegenerative disorder with poor prognosis and mainly unknown pathophysiology. Heritability estimates exceed 30% but few genetic risk variants have been identified. Here we investigated common genetic variants associated with DLB in a large European multisite sample. We performed a genome wide association study in Norwegian and European cohorts of 720 DLB cases and 6490 controls and included 19 top-associated single-nucleotide polymorphisms in an additional cohort of 108 DLB cases and 75545 controls from Iceland. Overall the study included 828 DLB cases and 82035 controls. Variants in the ASH1L/GBA (Chr1q22) and APOE ε4 (Chr19) loci were associated with DLB surpassing the genome-wide significance threshold (p < 5 × 10-8). One additional genetic locus previously linked to psychosis in Alzheimer's disease, ZFPM1 (Chr16q24.2), showed suggestive association with DLB at p-value < 1 × 10-6. We report two susceptibility loci for DLB at genome-wide significance, providing insight into etiological factors. These findings highlight the complex relationship between the genetic architecture of DLB and other neurodegenerative disorders.


Subject(s)
Apolipoproteins E/genetics , Genome-Wide Association Study/methods , Glucosylceramidase/genetics , Lewy Body Disease/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Europe , Genetic Loci , Genetic Predisposition to Disease , Humans , Iceland , Norway , Nuclear Proteins/genetics , Transcription Factors/genetics
17.
Neurobiol Aging ; 84: 243.e1-243.e9, 2019 12.
Article in English | MEDLINE | ID: mdl-30979435

ABSTRACT

The risk of APOE for Alzheimer's disease (AD) is modified by age. Beyond APOE, the polygenic architecture may also be heterogeneous across age. We aim to investigate age-related genetic heterogeneity of AD and identify genomic loci with differential effects across age. Stratified gene-based genome-wide association studies and polygenic variation analyses were performed in the younger (60-79 years, N = 14,895) and older (≥80 years, N = 6559) age-at-onset groups using Alzheimer's Disease Genetics Consortium data. We showed a moderate genetic correlation (rg = 0.64) between the two age groups, supporting genetic heterogeneity. Heritability explained by variants on chromosome 19 (harboring APOE) was significantly larger in younger than in older onset group (p < 0.05). APOE region, BIN1, OR2S2, MS4A4E, and PICALM were identified at the gene-based genome-wide significance (p < 2.73 × 10-6) with larger effects at younger age (except MS4A4E). For the novel gene OR2S2, we further performed leave-one-out analyses, which showed consistent effects across subsamples. Our results suggest using genetically more homogeneous individuals may help detect additional susceptible loci.


Subject(s)
Alzheimer Disease/genetics , Genetic Heterogeneity , Humans
18.
Brain ; 142(2): 460-470, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30689776

ABSTRACT

Mounting evidence indicates that the polygenic basis of late-onset Alzheimer's disease can be harnessed to identify individuals at greatest risk for cognitive decline. We have previously developed and validated a polygenic hazard score comprising of 31 single nucleotide polymorphisms for predicting Alzheimer's disease dementia age of onset. In this study, we examined whether polygenic hazard scores are associated with: (i) regional tracer uptake using amyloid PET; (ii) regional volume loss using longitudinal MRI; (iii) post-mortem regional amyloid-ß protein and tau associated neurofibrillary tangles; and (iv) four common non-Alzheimer's pathologies. Even after accounting for APOE, we found a strong association between polygenic hazard scores and amyloid PET standard uptake volume ratio with the largest effects within frontal cortical regions in 980 older individuals across the disease spectrum, and longitudinal MRI volume loss within the entorhinal cortex in 607 older individuals across the disease spectrum. We also found that higher polygenic hazard scores were associated with greater rates of cognitive and clinical decline in 632 non-demented older individuals, even after controlling for APOE status, frontal amyloid PET and entorhinal cortex volume. In addition, the combined model that included polygenic hazard scores, frontal amyloid PET and entorhinal cortex volume resulted in a better fit compared to a model with only imaging markers. Neuropathologically, we found that polygenic hazard scores were associated with regional post-mortem amyloid load and neuronal neurofibrillary tangles, even after accounting for APOE, validating our imaging findings. Lastly, polygenic hazard scores were associated with Lewy body and cerebrovascular pathology. Beyond APOE, we show that in living subjects, polygenic hazard scores were associated with amyloid deposition and neurodegeneration in susceptible brain regions. Polygenic hazard scores may also be useful for the identification of individuals at the highest risk for developing multi-aetiological dementia.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Multifactorial Inheritance/genetics , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/genetics , Aged , Aged, 80 and over , Female , Humans , Male , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/genetics
19.
Nat Genet ; 51(3): 404-413, 2019 03.
Article in English | MEDLINE | ID: mdl-30617256

ABSTRACT

Alzheimer's disease (AD) is highly heritable and recent studies have identified over 20 disease-associated genomic loci. Yet these only explain a small proportion of the genetic variance, indicating that undiscovered loci remain. Here, we performed a large genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 cases, 383,378 controls). AD-by-proxy, based on parental diagnoses, showed strong genetic correlation with AD (rg = 0.81). Meta-analysis identified 29 risk loci, implicating 215 potential causative genes. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver, and microglia). Gene-set analyses indicate biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomization results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD.


Subject(s)
Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Quantitative Trait Loci/genetics , Adult , Case-Control Studies , Female , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk , Young Adult
20.
Neuroimage ; 185: 793-801, 2019 01 15.
Article in English | MEDLINE | ID: mdl-29684645

ABSTRACT

Pediatric neuroimaging is challenging due the rapid structural, metabolic, and functional changes that occur in the developing brain. A specially trained team is needed to produce high quality diagnostic images in children, due to their small physical size and immaturity. Patient motion, cooperation and medical condition dictate the methods and equipment used. A customized approach tailored to each child's age and functional status with the appropriate combination of dedicated staff, imaging hardware, and software is key; these range from low-tech techniques, such as feed and swaddle, to specialized small bore MRI scanners, MRI compatible incubators and neonatal head coils. New pre-and post-processing techniques can also compensate for the motion artifacts and low signal that often degrade neonatal scans.


Subject(s)
Brain/diagnostic imaging , Brain/growth & development , Neuroimaging/methods , Child , Female , Humans , Infant , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...