Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(26): 10563-76, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27264670

ABSTRACT

In the on-going quest to harvest near-infrared (NIR) photons for energy conversion applications, a novel family of neutral ruthenium(ii) sensitizers has been developed by cyclometalation of an azadipyrromethene chromophore. These rare examples of neutral ruthenium complexes based on polypyridine ligands exhibit an impressive panchromaticity achieved by the cyclometalation strategy, with strong light absorption in the 600-800 nm range that tails beyond 1100 nm in the terpyridine-based adducts. Evaluation of the potential for Dye-Sensitized Solar Cells (DSSC) and Organic Photovoltaic (OPV) applications is made through rationalization of the structure-property relationship by spectroscopic, electrochemical, X-ray structural and computational modelization investigations. Spectroscopic evidence for photo-induced charge injection into the conduction band of TiO2 is also provided.

2.
Dalton Trans ; 45(18): 7589-604, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27045555

ABSTRACT

Ten newly synthesized non-symmetric benzo[b]-fused BODIPYs are compared with an extended series of nine related families (23 compounds) to gain insights into their structure-property relationship. The insertion of a fused indole moiety into the dipyrromethene core and various substituents on the proximal aryl including fused aromatic groups, lead to pronounced changes in the properties of compounds . By taking advantage of this versatile synthetic platform that allows facile substituent modifications and extension of the π-conjugated system, significant bathochromic shifts in the absorption (λmax = 511-597 nm) and emission (601-757 nm) bands are achieved. Although the oxidation potentials of the compounds vary considerably throughout the series (+1.28-+1.65 V) due to the significant contribution of the aryl function to the HOMO, the reduction remains much more consistent (-0.61 to -0.79 V) as the LUMO resides primarily on the dipyrromethene core with little aryl contribution as calculated by DFT. For example, installation of a dimethylamine substituent in the para position of the aryl group leads to drastic modification of the optoelectronic properties of the absorption (597 nm) and emission (757 nm) maxima. The full electrochemical, photophysical and computational analyses of the compounds along with the structural characterization of compounds , , , and are used to rationalize the potential of this powerful platform.

3.
Phys Chem Chem Phys ; 16(40): 22207-21, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25212391

ABSTRACT

As analogues of the porphyrinoid and dipyrromethene families of dye, azadipyrromethene (ADPM) derivatives exhibit exciting photophysical properties. Their high absorbance (ε up to 100,000 M(-1) cm(-1)) in the yellow-to-red region and the strong NIR luminescence encountered in boron-chelated aza-BODIPY analogues are especially interesting in the context of light-harvesting and life science applications. In the present study, we endeavoured to compare symmetric and asymmetric tetradentate ADPM derivatives 1-6 versus two related bidentate ADPM references in order to gain insights into their structure-property relationship. This is of interest since the tetradentate motif opens the way for extended π-conjugation through metal-mediated planarization, in a bio-mimicry fashion of metalloporphyrinoids, and is known to induce a bathochromic shift toward the NIR. A new straightforward synthetic approach is used to access asymmetric derivatives 4-6 that avoids the tedious heterocycle formation of nitroso-pyrrole intermediates. In addition, photophysics, electrochemistry, computational modelization (DFT and TD-DFT) and X-ray structural characterization of ADPMs are used to better understand the potential of these new chromophores.

4.
Inorg Chem ; 51(22): 12132-41, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23113615

ABSTRACT

As a chromophore closely related to dipyrromethene (DPM), the azadipyrromethene (ADPM) family has attracted much interest in the life sciences and optoelectronic fields. A high-yielding microwave-assisted synthesis is reported for new homoleptic complexes of cobalt(II), nickel(II), copper(II) and zinc(II) based on the tetrakis(p-methoxyphenyl)azadipyrromethene ligand 1b. These complexes are compared with other homoleptic complexes of the same metal(II) series based on the tetraphenylazadipyrromethene 1a and also with related BF2(+) chelates (Aza-BODIPYs 6a and 6b) for a better understanding of trends arising from substitution of the chelate and/or the electron-donating effect of the p-methoxy substituents. The electrochemical behavior of the new compounds 2b, 3b, and 5b in dichloromethane revealed two pseudoreversible reductions (2b, -1.09 and -1.25 V vs SCE; 3b, -1.05 and -1.29 V; 5b, -1.13 and -1.25 V) followed by a third irreversible process (2b, -1.78 V; 3b, -1.80 V; 5b, -1.77 V) along with two pseudoreversible oxidations (2b, 0.55 and 0.80 V; 3b, 0.56 and 0.80 V; 5b, 0.55 and 0.80 V) followed by two closely spaced irreversible processes (2b, 1.21 and 1.27 V; 3b, 1.21 and 1.28 V; 5b, 1.22 and 1.25 V). On its side, copper(II) homoleptic complex 4b revealed only one pseudoreversible reduction at -0.59 V followed by three irreversible processes at -0.95, -1.54, and -1.74 V, respectively. The oxidation behavior of this complex exhibited two pseudoreversible processes (0.55 and 0.82 V) and two irreversible processes (1.19 and 1.25 V). The redox processes are assigned and discussed in relation to their photophysical properties. X-ray structures for 1b and related copper(II) complex 2b are also discussed.


Subject(s)
Aza Compounds/chemistry , Coloring Agents/chemistry , Coordination Complexes/chemistry , Metals, Heavy/chemistry , Coordination Complexes/chemical synthesis , Microwaves , Molecular Structure
5.
J Org Chem ; 70(16): 6230-41, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16050682

ABSTRACT

A versatile synthetic route to potentially useful fused-ring [1,2,4]thiadiazole scaffolds (e.g., 7a and 10b) via exchange reactions of the precursor [1,2,4]thiadiazol-3-(2H)one derivatives (e.g., 6 and 9) with appropriately substituted nitriles (e.g., cyanogen bromide or p-toluenesulfonyl cyanide) under mild conditions is described. For example, the tricyclic 3-bromo [1,2,4]THD derivative (7a) underwent S(N)Ar substitution with a variety of nucleophiles, which included amines, malonate esters and alcohols. Likewise, the bicyclic 3-p-tosyl [1,2,4]THD (10b) was employed as a template in reaction with diamines, and the resulting substituted diamines (e.g., 12a or 12e) were further selectively derivatized at the N1 and/or N2 positions in a linear fashion. The X-ray crystal structure of the 3-methyl bicyclic [1,2,4]THD (21) was obtained, and selective methylation at the N1 position via a protection-alkylation-deprotection protocol, as illustrated in Scheme 6, was confirmed. Alternatively, a short convergent synthesis of N1-functionalized derivatives from the reaction of 10b with appropriately substituted secondary amines was also developed. Hence, these synthetic strategies were advantageously exploited to provide access to a variety of diversely derivatized 3-substituted fused-ring [1,2,4]thiadiazole derivatives.


Subject(s)
Benzene/chemistry , Imidazoles/chemistry , Thiadiazoles/chemistry , Amines/chemistry , Crystallography, X-Ray , Cyclization , Cysteine/chemistry , Molecular Structure , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacology
6.
Bioorg Med Chem ; 11(24): 5529-37, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14642597

ABSTRACT

A novel class of Cathepsin B inhibitors has been developed with a 1,2,4-thiadiazole heterocycle as the thiol trapping pharmacophore. Several compounds with different dipeptide recognition sequence (i.e., P1'-P2'=Leu-Pro-OH or P2-P1=Cbz-Phe-Ala) at the C5 position and with different substituents (i.e., OMe, Ph, or COOH) at the C3 position of the 1,2,4-thiadiazole ring have been synthesized and tested for their inhibitory activities. The substituted thiadiazoles 3a-h inhibit Cat B in a time dependent, irreversible manner. A mechanism based on active-site directed inactivation of the enzyme by disulfide bond formation between the active site cysteine thiol and the sulfur atom of the heterocycle is proposed. Compound 3a (K(i)=2.6 microM, k(i)K(i)=5630 M(-1)s(-1)) with a C3 methoxy moiety and a Leu-Pro-OH dipeptide recognition sequence, is found to be the most potent inhibitor in this series. The enhanced inhibitory potency of 3a is a consequence of its increased enzyme binding affinity (lower K(i)) rather than its increased intrinsic reactivity (higher k(i)). In addition, 3a is inactive against Cathepsin S, is a poor inhibitor of Cathepsin H and is >100-fold more selective for Cat B over papain.


Subject(s)
Cathepsin B/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Thiadiazoles/pharmacology , Binding Sites , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/classification , Dipeptides/chemical synthesis , Dipeptides/chemistry , Kinetics , Molecular Structure , Thiadiazoles/chemical synthesis , Thiadiazoles/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...