Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Viruses ; 13(6)2021 05 29.
Article in English | MEDLINE | ID: mdl-34072390

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), continues to wreak havoc, threatening the public health services and imposing economic collapse worldwide. Tailoring public health responses to the SARS-CoV-2 pandemic depends on understanding the mechanism of viral replication, disease pathogenesis, accurately identifying acute infections, and mapping the spreading risk of hotspots across the globe. However, effective identification and isolation of persons with asymptomatic and mild SARS-CoV-2 infections remain the major obstacles to efforts in controlling the SARS-CoV-2 spread and hence the pandemic. Understanding the mechanism of persistent viral shedding, reinfection, and the post-acute sequalae of SARS-CoV-2 infection (PASC) is crucial in our efforts to combat the pandemic and provide better care and rehabilitation to survivors. Here, we present a living literature review (January 2020 through 15 March 2021) on SARS-CoV-2 viral persistence, reinfection, and PASC. We also highlight potential areas of research to uncover putative links between viral persistence, intra-host evolution, host immune status, and protective immunity to guide and direct future basic science and clinical research priorities.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/prevention & control , Humans , Reinfection , SARS-CoV-2/immunology , Viral Tropism , Virus Shedding
3.
Viruses ; 12(6)2020 05 27.
Article in English | MEDLINE | ID: mdl-32471198

ABSTRACT

Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.


Subject(s)
APOBEC Deaminases/physiology , Lentivirus Infections/immunology , Lentivirus/immunology , APOBEC Deaminases/chemistry , Animals , Base Sequence , Humans , Lentivirus/metabolism , Lentivirus Infections/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
4.
Nat Struct Mol Biol ; 26(12): 1176-1183, 2019 12.
Article in English | MEDLINE | ID: mdl-31792451

ABSTRACT

HIV-1 virion infectivity factor (Vif) promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of human immunodeficiency virus type 1 (HIV-1) replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and the cellular cofactor core-binding factor beta (CBFß) at 3.9-Å resolution. The structure shows that Vif and CBFß form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFß beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.


Subject(s)
Cytosine Deaminase/chemistry , HIV-1/chemistry , vif Gene Products, Human Immunodeficiency Virus/chemistry , Core Binding Factor beta Subunit/chemistry , Cryoelectron Microscopy , Cytosine Deaminase/antagonists & inhibitors , Cytosine Deaminase/ultrastructure , Humans , Immune Evasion , Models, Molecular , Protein Conformation , Protein Domains , Protein Interaction Mapping , Proteolysis , Structure-Activity Relationship , vif Gene Products, Human Immunodeficiency Virus/pharmacology , vif Gene Products, Human Immunodeficiency Virus/ultrastructure
5.
PLoS One ; 13(3): e0195048, 2018.
Article in English | MEDLINE | ID: mdl-29596531

ABSTRACT

Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (A3) proteins are a family of cytidine deaminases that catalyze the conversion of deoxycytidine (dC) to deoxyuridine (dU) in single-stranded DNA (ssDNA). A3 proteins act in the innate immune response to viral infection by mutating the viral ssDNA. One of the most well-studied human A3 family members is A3G, which is a potent inhibitor of HIV-1. Each A3 protein prefers a specific substrate sequence for catalysis-for example, A3G deaminates the third dC in the CCCA sequence motif. However, the interaction between A3G and ssDNA is difficult to characterize due to poor solution behavior of the full-length protein and loss of DNA affinity of the truncated protein. Here, we present a novel DNA-anchoring fusion strategy using the protection of telomeres protein 1 (Pot1) which has nanomolar affinity for ssDNA, with which we captured an A3G-ssDNA interaction. We crystallized a non-preferred adenine in the -1 nucleotide-binding pocket of A3G. The structure reveals a unique conformation of the catalytic site loops that sheds light onto how the enzyme scans substrate in the -1 pocket. Furthermore, our biochemistry and virology studies provide evidence that the nucleotide-binding pockets on A3G influence each other in selecting the preferred DNA substrate. Together, the results provide insights into the mechanism by which A3G selects and deaminates its preferred substrates and help define how A3 proteins are tailored to recognize specific DNA sequences. This knowledge contributes to a better understanding of the mechanism of DNA substrate selection by A3G, as well as A3G antiviral activity against HIV-1.


Subject(s)
APOBEC-3G Deaminase/chemistry , APOBEC-3G Deaminase/metabolism , DNA, Single-Stranded/metabolism , APOBEC-3G Deaminase/genetics , Binding Sites , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Substrate Specificity
6.
Virology ; 514: 1-8, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29128752

ABSTRACT

The HIV-1 RNA genome contains complex structures with many structural elements playing regulatory roles during viral replication. A recent study has identified multiple RNA structures with unknown functions that are conserved among HIV-1 and two simian immunodeficiency viruses. To explore the roles of these conserved RNA structures, we introduced synonymous mutations into the HIV-1 genome to disrupt each structure. These mutants exhibited similar particle production, viral infectivity, and replication kinetics relative to the parent NL4-3 virus. However, when replicating in direct competition with the wild-type NL4-3 virus, mutations of RNA structures at inter-protein domain junctions can cause fitness defects. These findings reveal the ability of HIV-1 to tolerate changes in its sequences, even in apparently highly conserved structures, which permits high genetic diversity in HIV-1 population. Our results also suggest that some conserved RNA structures may function to fine-tune viral replication.


Subject(s)
HIV-1/genetics , Lentivirus/genetics , RNA, Viral/chemistry , Base Sequence , Conserved Sequence , HIV Infections/virology , HIV-1/chemistry , HIV-1/physiology , Humans , Inverted Repeat Sequences , Lentivirus/chemistry , Lentivirus/classification , Lentivirus/physiology , Lentivirus Infections/virology , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication
7.
Retrovirology ; 14(1): 19, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28302150

ABSTRACT

BACKGROUND: HIV-1 Vif interacts with the cellular core-binding factor ß (CBFß) and counteracts the protective roles of certain human APOBEC3 (A3) proteins by targeting them for proteasomal degradation. Previous studies have identified some amino acids important for Vif-CBFß interactions, and recently a co-crystal structure of a pentameric complex of HIV-1 Vif, CBFß, Cul5, EloB, and EloC was resolved. However, a comprehensive analysis of Vif-CBFß interactions that are important for Vif function has not been performed. RESULTS: Here, we carried out double-alanine scanning mutagenesis of the first 60 amino acids of Vif and determined their effects on interaction with CBFß and their ability to induce A3G degradation as well as rescue HIV-1 replication in the presence of A3G. We found that multiple Vif residues are involved in the extensive N-terminal Vif-CBFß interaction and that the 5WQVMIVW11 region of Vif is the major determinant. A minimum of three alanine substitutions are required to completely abrogate the Vif-CBFß interaction and Vif's ability to rescue HIV-1 infectivity in the presence of A3G. Mutational analysis of CBFß revealed that F68 and I55 residues are important and participate in a tripartite hydrophobic interaction with W5 of Vif to maintain a stable and functional Vif-CBFß complex. We also determined that CBFß amino acids 73WQGEQR78, which are not resolved in the structure of the pentameric complex, are not involved in interaction with HIV-1 Vif. CONCLUSIONS: Our results provide detailed insight into the Vif-CBFß interactions that are critical for Vif function and may contribute to the rational design of HIV-1 inhibitors that block Vif-mediated degradation of A3 proteins.


Subject(s)
Core Binding Factor beta Subunit/metabolism , HIV-1/physiology , Host-Pathogen Interactions , Protein Interaction Mapping , vif Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Substitution , Core Binding Factor beta Subunit/genetics , DNA Mutational Analysis , Humans , Mutagenesis, Site-Directed , Protein Binding , vif Gene Products, Human Immunodeficiency Virus/genetics
8.
Nucleic Acids Res ; 44(16): 7848-65, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27439715

ABSTRACT

Although APOBEC3 cytidine deaminases A3G, A3F, A3D and A3H are packaged into virions and inhibit viral replication by inducing G-to-A hypermutation, it is not known whether they are copackaged and whether they can act additively or synergistically to inhibit HIV-1 replication. Here, we showed that APOBEC3 proteins can be copackaged by visualization of fluorescently-tagged APOBEC3 proteins using single-virion fluorescence microscopy. We further determined that viruses produced in the presence of A3G + A3F and A3G + A3H, exhibited extensive comutation of viral cDNA, as determined by the frequency of G-to-A mutations in the proviral genomes in the contexts of A3G (GG-to-AG) and A3D, A3F or A3H (GA-to-AA) edited sites. The copackaging of A3G + A3F and A3G + A3H resulted in an additive increase and a modest synergistic increase (1.8-fold) in the frequency of GA-to-AA mutations, respectively. We also identified distinct editing site trinucleotide sequence contexts for each APOBEC3 protein and used them to show that hypermutation of proviral DNAs from seven patients was induced by A3G, A3F (or A3H), A3D and A3G + A3F (or A3H). These results indicate that APOBEC3 proteins can be copackaged and can comutate the same genomes, and can cooperate to inhibit HIV replication.


Subject(s)
Cytosine Deaminase/metabolism , Genome, Viral , HIV-1/genetics , Mutation/genetics , APOBEC Deaminases , Adult , Cell Line , Cytidine Deaminase , HIV Infections/metabolism , HIV Infections/virology , Humans , Male , Mutation Rate , Nucleotides/genetics , Proviruses/physiology , Sequence Analysis, DNA , Virion/metabolism , vif Gene Products, Human Immunodeficiency Virus/metabolism
10.
J Mol Biol ; 426(6): 1220-45, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24189052

ABSTRACT

Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients.


Subject(s)
Cytosine Deaminase/immunology , HIV Infections/genetics , HIV/physiology , Immunity, Innate/immunology , Virus Replication/immunology , vif Gene Products, Human Immunodeficiency Virus/metabolism , APOBEC Deaminases , Cytidine Deaminase , DNA, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , Humans
11.
ACS Chem Biol ; 8(6): 1187-94, 2013.
Article in English | MEDLINE | ID: mdl-23517458

ABSTRACT

Clinical HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) potently inhibit viral replication with a dramatic drop in viral load. However, the emergence of resistance to these drugs underscores the need to develop next-generation IN catalytic site inhibitors with improved resistance profiles. Here, we present a novel candidate IN inhibitor, MB-76, a 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) derivative. MB-76 potently blocks HIV integration and is active against a panel of wild-type as well as raltegravir-resistant HIV-1 variants. The lack of cross-resistance with other INSTIs and the absence of resistance selection in cell culture indicate the potential of HID derivatives compared to previous INSTIs. A crystal structure of MB-76 bound to the wild-type prototype foamy virus intasome reveals an overall binding mode similar to that of INSTIs. Its compact scaffold displays all three Mg(2+) chelating oxygen atoms from a single ring, ensuring that the only direct contacts with IN are the invariant P214 and Q215 residues of PFV IN (P145 and Q146 for HIV-1 IN, respectively), which may partially explain the difficulty of selecting replicating resistant variants. Moreover, the extended, dolutegravir-like linker connecting the MB-76 metal chelating core and p-fluorobenzyl group can provide additional flexibility in the perturbed active sites of raltegravir-resistant INs. The compound identified represents a potential candidate for further (pre)clinical development as next-generation HIV IN catalytic site inhibitor.


Subject(s)
HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/enzymology , Isoquinolines/chemistry , Isoquinolines/pharmacology , Catalytic Domain/drug effects , Cell Line , HIV Infections/drug therapy , HIV Infections/enzymology , HIV Infections/virology , HIV-1/drug effects , Humans , Models, Molecular
12.
Drug Discov Today Technol ; 10(4): e517-22, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24451643

ABSTRACT

The interaction between lens epithelium-derived growth factor (LEDGF/p75) and HIV-1 integrase (IN) is an attractive target for antiviral development because its inhibition blocks HIV replication. Developing novel small molecules that disrupt the LEDGF/p75-IN interaction constitutes a promising new therapeutic strategy for the treatment of HIV. Here we will highlight recent advances in the design and development of small-molecule inhibitors binding to the LEDGF/p75 binding pocket of IN, referred to as LEDGINs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , HIV Infections/drug therapy , HIV Integrase Inhibitors/therapeutic use , HIV Integrase/metabolism , Transcription Factors/metabolism , Drug Design , HIV-1/physiology , Humans
13.
Mol Biol Int ; 2012: 863405, 2012.
Article in English | MEDLINE | ID: mdl-22928108

ABSTRACT

To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).

14.
Mol Ther ; 20(11): 2064-75, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22828501

ABSTRACT

The interaction between the human immunodeficiency virus (HIV) integrase (IN) and its cellular cofactor lens epithelium-derived growth factor (LEDGF/p75) is crucial for HIV replication. While recently discovered LEDGINs inhibit HIV-1 replication by occupying the LEDGF/p75 pocket in IN, it remained to be demonstrated whether LEDGF/p75 by itself can be targeted. By phage display we identified cyclic peptides (CPs) as the first LEDGF/p75 ligands that inhibit the LEDGF/p75-IN interaction. The CPs inhibit HIV replication in different cell lines without overt toxicity. In accord with the role of LEDGF/p75 in HIV integration and its inhibition by LEDGINs, CP64, and CP65 block HIV replication primarily by inhibiting the integration step. The CPs retained activity against HIV strains resistant to raltegravir or LEDGINs. Saturation transfer difference (STD) NMR showed residues in CP64 that strongly interact with LEDGF/p75 but not with HIV IN. Mutational analysis identified tryptophan as an important residue responsible for the activity of the peptides. Serial passaging of virus in the presence of CPs did not yield resistant strains. Our work provides proof-of-concept for direct targeting of LEDGF/p75 as novel therapeutic strategy and the CPs thereby serve as scaffold for future development of new HIV therapeutics.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Anti-HIV Agents/pharmacology , Cell Surface Display Techniques , HIV-1/physiology , Peptides, Cyclic/pharmacology , Transcription Factors/antagonists & inhibitors , Virus Replication , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Anti-HIV Agents/chemistry , Binding Sites , Conserved Sequence , Drug Evaluation, Preclinical , Drug Resistance, Viral , HIV Integrase/chemistry , HIV-1/drug effects , HIV-2/drug effects , HIV-2/physiology , HeLa Cells , Humans , Peptide Library , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Protein Binding , Transcription Factors/chemistry , Virus Internalization
15.
Antimicrob Agents Chemother ; 56(8): 4365-74, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22664975

ABSTRACT

Targeting the HIV integrase (HIV IN) is a clinically validated approach for designing novel anti-HIV therapies. We have previously described the discovery of a novel class of integration inhibitors, 2-(quinolin-3-yl)acetic acid derivatives, blocking HIV replication at a low micromolar concentration through binding in the LEDGF/p75 binding pocket of HIV integrase, hence referred to as LEDGINs. Here we report the detailed characterization of their mode of action. The design of novel and more potent analogues with nanomolar activity enabled full virological evaluation and a profound mechanistic study. As allosteric inhibitors, LEDGINs bind to the LEDGF/p75 binding pocket in integrase, thereby blocking the interaction with LEDGF/p75 and interfering indirectly with the catalytic activity of integrase. Detailed mechanism-of-action studies reveal that the allosteric mode of inhibition is likely caused by an effect on HIV-1 integrase oligomerization. The multimodal inhibition by LEDGINs results in a block in HIV integration and in a replication deficiency of progeny virus. The allosteric nature of LEDGINs leads to synergy in combination with the clinically approved active site HIV IN strand transfer inhibitor (INSTI) raltegravir, and cross-resistance profiling proves the distinct mode of action of LEDGINs and INSTIs. The allosteric nature of inhibition and compatibility with INSTIs underline an interest in further (clinical) development of LEDGINs.


Subject(s)
HIV Integrase Inhibitors/pharmacology , HIV Integrase/chemistry , HIV Integrase/metabolism , HIV-1/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Quinolines/pharmacology , Virus Integration/drug effects , Binding Sites/drug effects , Catalytic Domain/drug effects , Cell Line , HIV Integrase Inhibitors/chemistry , HIV-1/physiology , Humans , Protein Multimerization , Pyrrolidinones/pharmacology , Quinolines/chemistry , Raltegravir Potassium , Virus Replication/drug effects
16.
IDrugs ; 13(9): 622-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20799144

ABSTRACT

The AIDS 2010-XVIII International AIDS Conference, held in Vienna, included topics covering new therapeutic developments in the field of HIV therapy. This conference report highlights selected presentations on novel HIV entry inhibitors, reverse transcriptase inhibitors, integrase inhibitors and clinical trial data for an NRTI-based, antiviral, hyperactivation-limiting therapeutic. Investigational drugs discussed include GSK-1349572 (Viiv Healthcare/Shionogi & Co Ltd) and VS-411 (ViroStatics).


Subject(s)
Anti-HIV Agents/pharmacology , Drugs, Investigational/pharmacology , HIV Infections/drug therapy , Anti-HIV Agents/adverse effects , Clinical Trials as Topic , Drug Design , HIV Infections/virology , Humans
17.
Nat Chem Biol ; 6(6): 442-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20473303

ABSTRACT

Lens epithelium-derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase that promotes viral integration by tethering the preintegration complex to the chromatin. By virtue of its crucial role in the early steps of HIV replication, the interaction between LEDGF/p75 and integrase represents an attractive target for antiviral therapy. We have rationally designed a series of 2-(quinolin-3-yl)acetic acid derivatives (LEDGINs) that act as potent inhibitors of the LEDGF/p75-integrase interaction and HIV-1 replication at submicromolar concentration by blocking the integration step. A 1.84-A resolution crystal structure corroborates the binding of the inhibitor in the LEDGF/p75-binding pocket of integrase. Together with the lack of cross-resistance with two clinical integrase inhibitors, these findings define the 2-(quinolin-3-yl)acetic acid derivatives as the first genuine allosteric HIV-1 integrase inhibitors. Our work demonstrates the feasibility of rational design of small molecules inhibiting the protein-protein interaction between a viral protein and a cellular host factor.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , HIV Integrase/metabolism , HIV/physiology , Virus Integration/physiology , Virus Replication/physiology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Culture Techniques , Drug Resistance, Viral , Enzyme Inhibitors/chemical synthesis , HIV/drug effects , HIV/enzymology , HIV/pathogenicity , HIV Integrase/chemistry , HIV-1/drug effects , HIV-1/enzymology , HIV-1/physiology , Immunity, Innate , Models, Molecular , Peptide Fragments/metabolism , Quantitative Structure-Activity Relationship , Tetrahydroisoquinolines/pharmacology , User-Computer Interface , Virus Integration/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...