Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 124(22): 225002, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567902

ABSTRACT

The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order of the Fermi energy. Plasma heating and opacity enhancement are observed on ultrafast timescales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm dense matter.

2.
Phys Rev E ; 100(4-1): 043207, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770899

ABSTRACT

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.

3.
Phys Rev Lett ; 122(25): 255702, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31347873

ABSTRACT

We present laser-driven shock compression experiments on cryogenic liquid deuterium to 550 GPa along the principal Hugoniot and reflected-shock data up to 1 TPa. High-precision interferometric Doppler velocimetry and impedance-matching analysis were used to determine the compression accurately enough to reveal a significant difference as compared to state-of-the-art ab initio calculations and thus, no single equation of state model fully matches the principal Hugoniot of deuterium over the observed pressure range. In the molecular-to-atomic transition pressure range, models based on density functional theory calculations predict the maximum compression accurately. However, beyond 250 GPa along the principal Hugoniot, first-principles models exhibit a stiffer response than the experimental data. Similarly, above 500 GPa the reflected shock data show 5%-7% higher compression than predicted by all current models.

5.
Phys Rev Lett ; 118(3): 035501, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157359

ABSTRACT

We present shock compression data for deuterium through the molecular-to-atomic transition along the principal Hugoniot with unprecedented precision, enabling discrimination between subtle differences in first-principle theoretical predictions. These observations, supported through reshock measurements, provide tight constraints in a regime directly relevant to planetary interiors. Our findings are in best agreement with density functional theory; however, no one exchange-correlation functional describes well both the onset of dissociation and the maximum compression along the Hugoniot.

6.
Nat Commun ; 7: 11189, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27079420

ABSTRACT

Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen's structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us to extract ionization state as a function of compression. The onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.

7.
Phys Rev Lett ; 116(11): 115004, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035307

ABSTRACT

X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.

8.
Science ; 348(6242): 1455-60, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26113719

ABSTRACT

Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

9.
Phys Rev Lett ; 113(18): 185001, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25396375

ABSTRACT

The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

10.
Phys Rev Lett ; 111(9): 095001, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-24033041

ABSTRACT

Fast electron transport in Si, driven by ultraintense laser pulses, is investigated experimentally and via 3D hybrid particle-in-cell simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV.

11.
Phys Rev Lett ; 108(9): 091102, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463623

ABSTRACT

Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findings advocate that this water model be used as the standard for modeling Neptune, Uranus, and "hot Neptune" exoplanets and should improve our understanding of these types of planets.

12.
Phys Rev Lett ; 106(18): 185004, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21635098

ABSTRACT

The effect of lattice structure on the transport of energetic (MeV) electrons in solids irradiated by ultraintense laser pulses is investigated using various allotropes of carbon. We observe smooth electron transport in diamond, whereas beam filamentation is observed with less ordered forms of carbon. The highly ordered lattice structure of diamond is shown to result in a transient state of warm dense carbon with metalliclike conductivity, at temperatures of the order of 1-100 eV, leading to suppression of electron beam filamentation.

13.
Phys Rev Lett ; 102(2): 025005, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257285

ABSTRACT

X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator.

14.
Phys Rev Lett ; 103(22): 225501, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-20366104

ABSTRACT

Evaluation of models and theory of high-pressure material response is largely made through comparison with shock wave data, which rely on impedance match standards. The recent use of quartz as a shock wave standard has prompted a need for improved data. We report here on measurements of the quartz Hugoniot curve from 0.1-1.6 TPa. The new data, in agreement with our ab initio calculations, reveal substantial errors in the standard and have immediate ramifications for the equations of state of deuterium, helium, and carbon at pressures relevant to giant planets and other high-energy density conditions.

15.
Science ; 322(5909): 1822-5, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-19095937

ABSTRACT

The high-energy density behavior of carbon, particularly in the vicinity of the melt boundary, is of broad scientific interest and of particular interest to those studying planetary astrophysics and inertial confinement fusion. Previous experimental data in the several hundred gigapascal pressure range, particularly near the melt boundary, have only been able to provide data with accuracy capable of qualitative comparison with theory. Here we present shock-wave experiments on carbon (using a magnetically driven flyer-plate technique with an order of magnitude improvement in accuracy) that enable quantitative comparison with theory. This work provides evidence for the existence of a diamond-bc8-liquid triple point on the melt boundary.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 2): 036404, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18517530

ABSTRACT

Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 016409, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15697737

ABSTRACT

Using quantum molecular dynamics simulations, we show that the optical properties of aluminum change drastically along the nonmetal metal transition observed experimentally. As the density increases and the many-body effects become important, the optical response gradually evolves from the one characteristic of an atomic fluid to the one of a simple metal. We show that quantum molecular dynamics combined with the Kubo-Greenwood formulation naturally embodies the two limits and provides a powerful tool to calculate and benchmark the optical properties of various systems as they evolve into the warm dense matter regime.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 025401, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12241227

ABSTRACT

The electrical conductivity of warm, dense aluminum plasmas and liquids is calculated using ab initio molecular dynamics and the Kubo-Greenwood formula. The density range extends from near solid to one-hundredth of solid density, and the temperature range extends from 6000 K to 30 000 K. This density and temperature range allows direct comparison with experimental results obtained with the tamped exploding wire technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...