Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 60(5): 752-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22683679

ABSTRACT

We report on two low-molecular weight proteins that are stored in the venom of queen red imported fire ants (Solenopsis invicta). Translated amino acid sequences identified one protein to have 74.8% identity with the Sol i 2w worker allergen, and the other protein was found to have 96/97% identity with Sol i 4.01w/4.02w worker allergens. Both Sol i 2 and Sol i 4 queen and worker proteins were expressed using pEXP1-DEST vector in SHuffle™ T7 Express lysY Escherichia coli. Proteins were expressed at significant concentrations, as opposed to the µg/ml amounts by our previous expression methods, enabling further study of these proteins. Sol i 2q protein bound weakly to human IgE, sera pooled from allergic patients, whereas Sol i 2w, Sol i 4.01w, and Sol i 4q proteins bound strongly. Despite Sol i 2w and Sol i 2q proteins having 74.8% identity, the queen protein is less immuno-reactive than the worker allergen. This finding is consistent with allergic individuals being less sensitive to queen than worker venom.


Subject(s)
Ant Venoms/genetics , Ant Venoms/metabolism , Ants/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Amino Acid Sequence , Animals , Ant Venoms/immunology , Base Sequence , Escherichia coli , Genetic Vectors/genetics , Immune Sera/metabolism , Immunoglobulin E/metabolism , Insect Proteins/immunology , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology , Texas
2.
Naturwissenschaften ; 89(7): 302-4, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12216859

ABSTRACT

We conducted five bioassays to study how queens control the execution of sexual larvae by workers in colonies of the red imported fire ant, Solenopsis invicta. In each assay, subset colonies were made from many large polygyne colonies, and the 20 sexual larvae they contained were monitored over time. Sexual larvae mostly survived in queenless colonies, but were mostly killed in colonies with a single dealated queen, regardless of whether or not the queen was fertilized. The larvae were also killed when fresh corpses of queens were added to queenless colonies. Whereas acetone extracts of queens did not produce a significant increase in killings, extracts in buffered saline induced workers to execute most sexual larvae, indicating successful extraction of an execution pheromone. We identified the probable storage location of the chemical as the poison sac, and found both fresh (1 day) and old (21 day) extracts of poison sacs to be equally effective in inducing executions. The pheromone is stable at room temperature, perhaps because venom alkaloids also present in the extracts keep the pheromone from degrading. It is apparently either proteinaceous or associated with a proteinaceous molecule, a novel finding, as no queen pheromone of a proteinaceous nature has been previously demonstrated in ants.


Subject(s)
Ants/physiology , Pheromones/physiology , Animals , Female , Larva/physiology , Sexual Behavior, Animal , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...