Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36851520

ABSTRACT

Rift Valley Fever virus (RVFV) and Toscana virus (TOSV) are two pathogenic arthropod-borne viruses responsible for zoonotic infections in both humans and animals; as such, they represent a growing threat to public and veterinary health. Interferon-induced transmembrane (IFITM) proteins are broad inhibitors of a large panel of viruses belonging to various families and genera. However, little is known on the interplay between RVFV, TOSV, and the IFITM proteins derived from their naturally infected host species. In this study, we investigated the ability of human, bovine, and camel IFITMs to restrict RVFV and TOSV infection. Our results indicated that TOSV was extremely sensitive to inhibition by all the animal IFITMs tested, while RVFV was inhibited by human IFITM-2 and IFITM-3, but not IFITM-1, and exhibited a more heterogeneous resistance phenotype towards the individual bovine and camel IFITMs tested. Overall, our findings shed some light on the complex and differential interplay between two zoonotic viruses and IFITMs from their naturally infected animal species.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Sandfly fever Naples virus , Humans , Animals , Cattle , Camelus , Zoonoses , Host Specificity , Interferons , Membrane Proteins
2.
Viruses ; 12(4)2020 04 07.
Article in English | MEDLINE | ID: mdl-32272808

ABSTRACT

Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590, a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination with other sequence information to construct functional cDNA plasmids encoding the viral L, M, and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference genome, which, when corrected, restored functionality to the polymerase L and made it possible to recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system. Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing reporter genes instead of NSs. The availability of such a system assists investigating questions that require genetic manipulation of the viral genome, such as investigations into replication and tropism, and beyond these fundamental aspects, also the development of novel vaccine design strategies.


Subject(s)
Genome, Viral , Reverse Genetics/methods , Sandfly fever Naples virus/genetics , A549 Cells , Humans , Phlebotomus Fever/virology , Promoter Regions, Genetic , Sandfly fever Naples virus/classification , Viral Proteins/genetics
3.
Viruses ; 11(10)2019 09 27.
Article in English | MEDLINE | ID: mdl-31569658

ABSTRACT

The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells.


Subject(s)
Actins/metabolism , Actins/ultrastructure , Nanotubes/ultrastructure , Viral Nonstructural Proteins/metabolism , Animals , Antibodies, Viral , Cell Line , Chlorocebus aethiops , Cloning, Molecular , Cytoskeleton , HEK293 Cells , Humans , Kinetics , Recombinant Proteins , Vero Cells , Viral Nonstructural Proteins/genetics , West Nile virus/genetics
4.
J Virol ; 89(16): 8462-73, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26041289

ABSTRACT

UNLABELLED: Ovine pulmonary adenocarcinoma is a naturally occurring lung cancer in sheep induced by the Jaagsiekte sheep retrovirus (JSRV). Its envelope glycoprotein (Env) carries oncogenic properties, and its expression is sufficient to induce in vitro cell transformation and in vivo lung adenocarcinoma. The identification of cellular partners of the JSRV envelope remains crucial for deciphering mechanisms leading to cell transformation. We initially identified RALBP1 (RalA binding protein 1; also known as RLIP76 or RIP), a cellular protein implicated in the ras pathway, as a partner of JSRV Env by yeast two-hybrid screening and confirmed formation of RALBP1/Env complexes in mammalian cells. Expression of the RALBP1 protein was repressed in tumoral lungs and in tumor-derived alveolar type II cells. Through its inhibition using specific small interfering RNA (siRNA), we showed that RALBP1 was involved in envelope-induced cell transformation and in modulation of the mTOR (mammalian target of rapamycin)/p70S6K pathway by the retroviral envelope. IMPORTANCE: JSRV-induced lung adenocarcinoma is of importance for the sheep industry. While the envelope has been reported as the oncogenic determinant of the virus, the cellular proteins directly interacting with Env are still not known. Our report on the formation of RALBP/Env complexes and the role of this interaction in cell transformation opens up a new hypothesis for the dysregulation observed upon virus infection in sheep.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cell Transformation, Viral/physiology , GTPase-Activating Proteins/metabolism , Gene Products, env/metabolism , Jaagsiekte sheep retrovirus/physiology , Pulmonary Adenomatosis, Ovine/physiopathology , Sheep Diseases/physiopathology , Sheep Diseases/virology , Animals , Blotting, Western , DNA Primers/genetics , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Humans , Immunoprecipitation , Multiprotein Complexes/metabolism , Open Reading Frames/genetics , RNA, Small Interfering/genetics , Sheep , Statistics, Nonparametric , Two-Hybrid System Techniques
5.
J Virol ; 89(1): 535-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339764

ABSTRACT

UNLABELLED: Bone marrow stromal cell antigen 2 (BST2) is a cellular restriction factor with a broad antiviral activity. In sheep, the BST2 gene is duplicated into two paralogs termed oBST2A and oBST2B. oBST2A impedes viral exit of the Jaagsiekte sheep retroviruses (JSRV), most probably by retaining virions at the cell membrane, similar to the "tethering" mechanism exerted by human BST2. In this study, we provide evidence that unlike oBST2A, oBST2B is limited to the Golgi apparatus and disrupts JSRV envelope (Env) trafficking by sequestering it. In turn, oBST2B leads to a reduction in Env incorporation into viral particles, which ultimately results in the release of virions that are less infectious. Furthermore, the activity of oBST2B does not seem to be restricted to retroviruses, as it also acts on vesicular stomatitis virus glycoproteins. Therefore, we suggest that oBST2B exerts antiviral activity using a mechanism distinct from the classical tethering restriction observed for oBST2A. IMPORTANCE: BST2 is a powerful cellular restriction factor against a wide range of enveloped viruses. Sheep possess two paralogs of the BST2 gene called oBST2A and oBST2B. JSRV, the causative agent of a transmissible lung cancer of sheep, is known to be restricted by oBST2A. In this study, we show that unlike oBST2A, oBST2B impairs the normal cellular trafficking of JSRV envelope glycoproteins by sequestering them within the Golgi apparatus. We also show that oBST2B decreases the incorporation of envelope glycoprotein into JSRV viral particles, which in turn reduces virion infectivity. In conclusion, oBST2B exerts a novel antiviral activity that is distinct from those of BST2 proteins of other species.


Subject(s)
Jaagsiekte sheep retrovirus/immunology , Jaagsiekte sheep retrovirus/physiology , Membrane Glycoproteins/immunology , Viral Envelope Proteins/antagonists & inhibitors , Virion/metabolism , Virus Assembly , Animals , Golgi Apparatus/metabolism , Protein Transport , Sheep
6.
BMC Vet Res ; 9: 224, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24206786

ABSTRACT

BACKGROUND: Airways progenitors may be involved in embryogenesis and lung repair. The characterization of these important populations may enable development of new therapeutics to treat acute or chronic lung disease. In this study, we aimed to establish the presence of bronchioloalveolar progenitors in ovine lungs and to characterize their potential to differentiate into specialized cells. RESULTS: Lung cells were studied using immunohistochemistry on frozen sections of the lung. Immunocytochemistry and flow cytometry were conducted on ex-vivo derived pulmonary cells. The bronchioloalveolar progenitors were identified by their co-expression of CCSP, SP-C and CD34. A minor population of CD34(pos)/SP-C(pos)/CCSP(pos) cells (0.33% ± 0.31) was present ex vivo in cell suspensions from dissociated lungs. Using CD34 magnetic positive-cell sorting, undifferentiated SP-C(pos)/CCSP(pos) cells were purified (>80%) and maintained in culture. Using synthetic media and various extracellular matrices, SP-C(pos)/CCSP(pos) cells differentiated into either club cells (formerly named Clara cells) or alveolar epithelial type-II cells. Furthermore, these ex vivo and in vitro derived bronchioloalveolar progenitors expressed NANOG, OCT4 and BMI1, specifically described in progenitors or stem cells, and during lung development. CONCLUSIONS: We report for the first time in a large animal the existence of bronchioloalveolar progenitors with dual differentiation potential and the expression of specialized genes. These newly described cell population in sheep could be implicated in regeneration of the lung following lesions or in development of diseases such as cancers.


Subject(s)
Bronchi/cytology , Cell Differentiation/physiology , Lung/cytology , Pulmonary Alveoli/cytology , Stem Cells/physiology , Animals , Bronchi/growth & development , Flow Cytometry/veterinary , Gene Expression/physiology , Immunohistochemistry/veterinary , Lung/growth & development , Pulmonary Alveoli/growth & development , Pulmonary Surfactant-Associated Protein C/biosynthesis , Respiratory Mucosa/cytology , Respiratory Mucosa/growth & development , Sheep
7.
Vet Res ; 37(5): 725-32, 2006.
Article in English | MEDLINE | ID: mdl-16820136

ABSTRACT

Dermanyssus gallinae is one of the most serious ectoparasites of poultry and it has been implicated as a vector of several major pathogenic diseases. Molecular detection of such pathogens in mites is crucial and therefore, an important step is the extraction of their DNA from mites. So, we compared four DNA extraction protocols from engorged and unfed individual mites: a conventional method using a Cethyl Trimethyl Ammonium Bromide buffer (CTAB), a Chelex resin, a Qiamp DNA extraction kit and a more recent one filter-based technology (FTA). The DNA samples have been tested for their ability to be amplified by an amplification of a D. gallinae 16S rRNA gene region. The best results were obtained using CTAB and Qiagen methods at the same time with unfed and engorged mites (96% and 100% of amplified samples). FTA produced similar results when using unfed mites but not when processing engorged ones (96% and 70%). Finally, the Chelex method was the least efficient in terms of DNA amplification, especially when applied on engorged individuals (50%). The possible inhibitor role of these Chelex extracted DNA was demonstrated by the means of a PCR control on PUC plasmid. No difference was observed with CTAB, Qiamp DNA extraction kit or FTA methods using DNA extracted one year before.


Subject(s)
DNA/isolation & purification , Mites/genetics , Animals , Arachnid Vectors , DNA/analysis , Gene Amplification , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Reproducibility of Results , Sensitivity and Specificity
8.
Theor Appl Genet ; 107(8): 1442-51, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12942173

ABSTRACT

The radish Rfo gene restores male fertility in radish or rapeseed plants carrying Ogura cytoplasmic male-sterility. This system was first discovered in radish and was transferred to rapeseed for the production of F1 hybrid seeds. We aimed to identify the region of the Arabidopsis genome syntenic to the Rfo locus and to characterize the radish introgression in restored rapeseed. We used two methods: amplified consensus genetic markers (ACGMs) in restored rapeseed plants and construction of a precise genetic map around the Rfo gene in a segregating radish population. The use of ACGMs made it possible to detect radish orthologs of Arabidopsis genes in the restored rapeseed genome. We identified radish genes, linked to Rfo in rapeseed and whose orthologs in Arabidopsis are carried by chromosomes 1, 4 and 5. This indicates several breaks in colinearity between radish and Arabidopsis genomes in this region. We determined the positions of markers relative to each other and to the Rfo gene, using the progeny of a rapeseed plant with unstable meiotic transmission of the radish introgression. This enabled us to produce a schematic diagram of the radish introgression in rapeseed. Markers which could be mapped both on radish and restored rapeseed indicate that at least 50 cM of the radish genome is integrated in restored rapeseed. Using markers closely linked to the Rfo gene in rapeseed and radish, we identified a contig spanning six bacterial artificial chromosome (BAC) clones on Arabidopsis chromosome 1, which is likely to carry the orthologous Rfo gene.


Subject(s)
Arabidopsis/genetics , Brassica/genetics , Genome, Plant , Plant Proteins/genetics , Arabidopsis/physiology , Chromosomes, Artificial, Bacterial , Polymerase Chain Reaction
9.
EMBO Rep ; 4(6): 588-94, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12740605

ABSTRACT

Ogura cytoplasmic male sterility (CMS) in radish (Raphanus sativus) is caused by an aberrant mitochondrial gene, Orf138, that prevents the production of functional pollen without affecting female fertility. Rfo, a nuclear gene that restores male fertility, alters the expression of Orf138 at the post-transcriptional level. The Ogura CMS/Rfo two-component system is a useful model for investigating nuclear-cytoplasmic interactions, as well as the physiological basis of fertility restoration. Using a combination of positional cloning and microsynteny analysis of Arabidopsis thaliana and radish, we genetically and physically delimited the Rfo locus to a 15-kb DNA segment. Analysis of this segment shows that Rfo is a member of the pentatricopeptide repeat (PPR) family. In Arabidopsis, this family contains more than 450 members of unknown function, although most of them are predicted to be targeted to mitochondria and chloroplasts and are thought to have roles in organellar gene expression.


Subject(s)
Genes, Plant , Raphanus/genetics , Amino Acid Sequence , Arabidopsis/genetics , Cell Nucleus/metabolism , Chloroplasts/metabolism , Chromosome Mapping , Cloning, Molecular , Cytoplasm/metabolism , Databases as Topic , Genetic Markers , Mitochondria/metabolism , Models, Genetic , Molecular Sequence Data , Phylogeny , Physical Chromosome Mapping , Plant Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...