Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 147: 88-98, 2023 03.
Article in English | MEDLINE | ID: mdl-36753809

ABSTRACT

OBJECTIVE: This retrospective (case-control) collaborative study evaluates tendon reflex recordings combined with transcranial magnetic stimulation motor evoked potentials recordings (T-MEPs) at lower limbs in amyotrophic lateral sclerosis (ALS). METHODS: T-MEPs were recorded in 97 ALS patients distinguished according to their patellar reflex briskness. Patients' electrophysiological data were compared with values measured in 60 control patients matched for age and height. Correlations studies between parameters or with some patients' clinical characteristics were also performed. RESULTS: The central motor conduction time yields the highest sensitivity (82%) and specificity (93%), allowing twice more upper motor neuron (UMN) dysfunction detection than clinical examination, and being more altered in late stages of the disease. The T response to MEP response amplitude ratio (T/MEP ar) is nearly as sensitive to detect ALS and better identifies abnormal hyperreflexia. It is not correlated with evolutive stage, contrarily to conduction time-related parameters. In addition, T-MEPs detect asymmetries escaping clinical examination. CONCLUSIONS: The corticospinal conduction to lower limbs is slowed in ALS. The T/MEP ar helps deciding when patellar reflexes are abnormal in a given patient suspected of ALS. SIGNIFICANCE: The T-MEP technique provide powerful electrophysiological biomarkers of UMN involvement in ALS. This simple and painless procedure introduces the clinically useful concept of electrophysiological hyperreflexia and might be expanded to future exploration of proximal upper limbs and bulbar territories.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Evoked Potentials, Motor/physiology , Reflex, Stretch , Retrospective Studies , Reflex, Abnormal , Transcranial Magnetic Stimulation
2.
Sci Rep ; 8(1): 8785, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29884887

ABSTRACT

Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.


Subject(s)
Cell Division , Cell Nucleus/ultrastructure , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Spheroids, Cellular/cytology , Cell Proliferation , HCT116 Cells , Humans , Spheroids, Cellular/ultrastructure
3.
Genome Res ; 26(4): 474-85, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26893459

ABSTRACT

Ocular developmental anomalies (ODA) such as anophthalmia/microphthalmia (AM) or anterior segment dysgenesis (ASD) have an estimated combined prevalence of 3.7 in 10,000 births. Mutations in SOX2 are the most frequent contributors to severe ODA, yet account for a minority of the genetic drivers. To identify novel ODA loci, we conducted targeted high-throughput sequencing of 407 candidate genes in an initial cohort of 22 sporadic ODA patients. Patched 1 (PTCH1), an inhibitor of sonic hedgehog (SHH) signaling, harbored an enrichment of rare heterozygous variants in comparison to either controls, or to the other candidate genes (four missense and one frameshift); targeted resequencing of PTCH1 in a second cohort of 48 ODA patients identified two additional rare nonsynonymous changes. Using multiple transient models and a CRISPR/Cas9-generated mutant, we show physiologically relevant phenotypes altering SHH signaling and eye development upon abrogation of ptch1 in zebrafish for which in vivo complementation assays using these models showed that all six patient missense mutations affect SHH signaling. Finally, through transcriptomic and ChIP analyses, we show that SOX2 binds to an intronic domain of the PTCH1 locus to regulate PTCH1 expression, findings that were validated both in vitro and in vivo. Together, these results demonstrate that PTCH1 mutations contribute to as much as 10% of ODA, identify the SHH signaling pathway as a novel effector of SOX2 activity during human ocular development, and indicate that ODA is likely the result of overactive SHH signaling in humans harboring mutations in either PTCH1 or SOX2.


Subject(s)
Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Patched-1 Receptor/genetics , SOXB1 Transcription Factors/metabolism , Alleles , Animals , Case-Control Studies , Disease Models, Animal , Genetic Loci , Heterozygote , Humans , Mutation , Patched-1 Receptor/metabolism , Phenotype , Sequence Analysis, DNA , Zebrafish
4.
IEEE Trans Med Imaging ; 35(1): 294-306, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26292339

ABSTRACT

Extracting geometrical information from large 2D or 3D biomedical images is important to better understand fundamental phenomena such as morphogenesis. We address the problem of automatically analyzing spatial organization of cells or nuclei in 2D or 3D images of tissues. This problem is challenging due to the usually low quality of microscopy images as well as their typically large sizes. The structure tensor is a simple and robust descriptor that was developed to analyze textures orientation. Contrarily to segmentation methods which rely on an object based modeling of images, the structure tensor considers the sample at a macroscopic scale, like a continuous medium. We show that this tool allows quantifying two important features of nuclei in tissues: their privileged orientation as well as the ratio between the length of their main axes. A quantitative evaluation of the method is provided for synthetic and real 2D and 3D images. As an application, we analyze the nuclei orientation and anisotropy on multicellular tumor spheroids cryosections. This analysis reveals that cells are elongated in a privileged direction that is parallel to the spheroid boundary. A MATLAB toolbox and an Icy plugin are available to use the proposed method.


Subject(s)
Cell Nucleus/physiology , Image Processing, Computer-Assisted/methods , Models, Biological , Algorithms , Computer Simulation , Microscopy , Software , Spheroids, Cellular , Tumor Cells, Cultured
5.
PLoS One ; 8(12): e80447, 2013.
Article in English | MEDLINE | ID: mdl-24312473

ABSTRACT

Growing solid tumors are subjected to mechanical stress that influences their growth rate and development. However, little is known about its effects on tumor cell biology. To explore this issue, we investigated the impact of mechanical confinement on cell proliferation in MultiCellular Tumor Spheroids (MCTS), a 3D culture model that recapitulates the microenvironment, proliferative gradient, and cell-cell interactions of a tumor. Dedicated polydimethylsiloxane (PDMS) microdevices were designed to spatially restrict MCTS growth. In this confined environment, spheroids are likely to experience mechanical stress as indicated by their modified cell morphology and density and by their relaxation upon removal from the microdevice. We show that the proliferation gradient within mechanically confined spheroids is different in comparison to MCTS grown in suspension. Furthermore, we demonstrate that a population of cells within the body of mechanically confined MCTS is arrested at mitosis. Cell morphology analysis reveals that this mitotic arrest is not caused by impaired cell rounding, but rather that confinement negatively affects bipolar spindle assembly. All together these results suggest that mechanical stress induced by progressive confinement of growing spheroids could impair mitotic progression. This study paves the way to future research to better understand the tumor cell response to mechanical cues similar to those encountered during in vivo tumor development.


Subject(s)
Mitosis , Neoplasms/metabolism , Spheroids, Cellular/metabolism , Stress, Physiological , Cell Line, Tumor , Humans , Neoplasms/pathology , Spheroids, Cellular/pathology
6.
J Microsc ; 251(2): 128-32, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23691992

ABSTRACT

Single Plane Illumination Microscopy is an emerging and powerful technology for live imaging of whole living organisms. However, sample handling that relies on specimen embedding in agarose or gel is often a key limitation, especially for time-lapse monitoring. To address this issue, we developed a new concept for a holder device allowing us to prepare a sample container made of hydrogel. The production process of this holder is based on 3D printing of both a frame and casting devices. The simplicity of production and the advantages of this versatile new sample holder are shown with time-lapse recording of multicellular tumour spheroid growth. More importantly, we also show that cell division is not impaired in contrast to what is observed with gel embedding. The benefit of this new holder for other sample types, applications and experiments remains to be evaluated, but this innovative concept of fully customizable sample holder preparation potentially represents a major step forward to facilitate the large diffusion of single plane illumination microscopy technology.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Lighting/instrumentation , Microscopy/instrumentation , Time-Lapse Imaging/instrumentation , Cell Line, Tumor , Humans , Imaging, Three-Dimensional/methods , Lighting/methods , Microscopy/methods , Time-Lapse Imaging/methods
7.
Mol Vis ; 16: 2847-9, 2010 Dec 18.
Article in English | MEDLINE | ID: mdl-21203406

ABSTRACT

PURPOSE: Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. METHODS: Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. RESULTS: Two heterozygous variants of unknown significance (c.128C>G [p.Pro43Arg]; c.776C>A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C>A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C>G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. CONCLUSIONS: Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia.


Subject(s)
Anophthalmos/genetics , Homeodomain Proteins/genetics , Microphthalmos/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Amino Acid Sequence , Base Sequence , Cohort Studies , Conserved Sequence/genetics , Homeodomain Proteins/chemistry , Humans , LIM-Homeodomain Proteins , Molecular Sequence Data , Transcription Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...