Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068938

ABSTRACT

The limited availability of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred the search for novel antiviral drugs. Here, we investigated the potential antiviral properties of plants adapted to high-salt environments collected in the north of France. Twenty-five crude methanolic extracts obtained from twenty-two plant species were evaluated for their cytotoxicity and antiviral effectiveness against coronaviruses HCoV-229E and SARS-CoV-2. Then, a bioguided fractionation approach was employed. The most active crude methanolic extracts were partitioned into three different sub-extracts. Notably, the dichloromethane sub-extract of the whole plant Hippophae rhamnoides L. demonstrated the highest antiviral activity against both viruses. Its chemical composition was evaluated by ultra-high performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) and then it was fractionated by centrifugal partition chromatography (CPC). Six cinnamoyl triterpenoid compounds were isolated from the three most active fractions by preparative high-performance liquid chromatography (HPLC) and identified by high resolution MS (HR-MS) and mono- and bi-dimensional nuclear magnetic resonance (NMR). Specifically, these compounds were identified as 2-O-trans-p-coumaroyl-maslinic acid, 3ß-hydroxy-2α-trans-p-coumaryloxy-urs-12-en-28-oic acid, 3ß-hydroxy-2α-cis-p-coumaryloxy-urs-12-en-28-oic acid, 3-O-trans-caffeoyl oleanolic acid, a mixture of 3-O-trans-caffeoyl oleanolic acid/3-O-cis-caffeoyl oleanolic acid (70/30), and 3-O-trans-p-coumaroyl oleanolic acid. Infection tests demonstrated a dose-dependent inhibition of these triterpenes against HCoV-229E and SARS-CoV-2. Notably, cinnamoyl oleanolic acids displayed activity against both SARS-CoV-2 and HCoV-229E. Our findings suggest that Hippophae rhamnoides could represent a source of potential antiviral agents against coronaviruses.


Subject(s)
Coronavirus 229E, Human , Hippophae , Oleanolic Acid , Triterpenes , Triterpenes/chemistry , Hippophae/chemistry , Salt-Tolerant Plants , North Sea , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/analysis
2.
Cell Mol Life Sci ; 80(12): 353, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940699

ABSTRACT

The coronavirus' (CoV) membrane (M) protein is the driving force during assembly, but this process remains poorly characterized. Previously, we described two motifs in the C-tail of the Middle East respiratory syndrome CoV (MERS-CoV) M protein involved in its endoplasmic reticulum (ER) exit (211DxE213) and trans-Golgi network (TGN) retention (199KxGxYR204). Here, their function in virus assembly was investigated by two different virus-like particle (VLP) assays and by mutating both motifs in an infectious MERS-CoV cDNA clone. It was shown that the 199KxGxYR204 motif was essential for VLP and infectious virus assembly. Moreover, the mislocalization of the M protein induced by mutation of this motif prevented M-E interaction. Hampering the ER export of M by mutating its 211DxE213 motif still allowed the formation of nucleocapsid-empty VLPs, but prevented the formation of fully assembled VLPs and infectious particles. Taken together, these data show that the MERS-CoV assembly process highly depends on the correct intracellular trafficking of its M protein, and hence that not only specific protein-protein interacting motifs but also correct subcellular localization of the M protein in infected cells is essential for virus formation and should be taken into consideration when studying the assembly process.


Subject(s)
Membrane Proteins , Middle East Respiratory Syndrome Coronavirus , Membrane Proteins/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Virus Assembly/genetics
3.
J Gen Virol ; 104(10)2023 10.
Article in English | MEDLINE | ID: mdl-37800895

ABSTRACT

Coronaviruses are positive-stranded RNA enveloped viruses. The helical nucleocapsid is surrounded by a lipid bilayer in which are anchored three viral proteins: the spike (S), membrane (M) and envelope (E) proteins. The M protein is the major component of the viral envelope and is believed to be its building block. The M protein of Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a short N-terminal domain with an N-glycosylation site. We investigated their N-glycosylation and show that polylactosamine chains are conjugated to SARS-CoV-2 and MERS-CoV M proteins in transfected and infected cells. Acidic residues present in the first transmembrane segments of the proteins are required for their glycosylation. No specific signal to specify polylactosamine conjugation could be identified and high mannose-conjugated protein was incorporated into virus-like particles.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/metabolism , Viral Matrix Proteins/genetics , Membrane Proteins , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Viruses ; 15(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37766264

ABSTRACT

(1) Background: Since the emergence of SARS-CoV-2, responsible for the COVID-19 pandemic, efforts have been made to identify antiviral compounds against human coronaviruses. With the aim of increasing the diversity of molecule scaffolds, 42 natural compounds, of which 28 were isolated from lichens and 14 from their associated microorganisms (bacteria and fungi), were screened against human coronavirus HCoV-229E. (2) Methods: Antiviral assays were performed using HCoV-229E in Huh-7 and Huh-7/TMPRSS2 cells and SARS-CoV-2 in a Vero-81-derived clone with a GFP reporter probe. (3) Results: Four lichen compounds, including chloroatranol, emodin, perlatolic acid and vulpinic acid, displayed high activities against HCoV-229E (IC50 = 68.86, 59.25, 16.42 and 14.58 µM, respectively) and no toxicity at active concentrations. Kinetics studies were performed to determine their mode of action. The four compounds were active when added at the replication step. Due to their significant activity, they were further tested on SARS-CoV-2. Perlatolic acid was shown to be active against SARS-CoV-2. (4) Conclusions: Taken together, these results show that lichens are a source of interesting antiviral agents against human coronaviruses. Moreover, perlatolic acid might be further studied for its pan-coronavirus antiviral activity.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Lichens , Humans , Pandemics , SARS-CoV-2 , Antiviral Agents/pharmacology
5.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298740

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, addressed the lack of specific antiviral drugs against coronaviruses. In this study, bioguided fractionation performed on both ethyl acetate and aqueous sub-extracts of Juncus acutus stems led to identifying luteolin as a highly active antiviral molecule against human coronavirus HCoV-229E. The apolar sub-extract (CH2Cl2) containing phenanthrene derivatives did not show antiviral activity against this coronavirus. Infection tests on Huh-7 cells, expressing or not the cellular protease TMPRSS2, using luciferase reporter virus HCoV-229E-Luc showed that luteolin exhibited a dose-dependent inhibition of infection. Respective IC50 values of 1.77 µM and 1.95 µM were determined. Under its glycosylated form (luteolin-7-O-glucoside), luteolin was inactive against HCoV-229E. Time of addition assay showed that utmost anti-HCoV-229E activity of luteolin was achieved when added at the post-inoculation step, indicating that luteolin acts as an inhibitor of the replication step of HCoV-229E. Unfortunately, no obvious antiviral activity for luteolin was found against SARS-CoV-2 and MERS-CoV in this study. In conclusion, luteolin isolated from Juncus acutus is a new inhibitor of alphacoronavirus HCoV-229E.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2 , Pandemics , Luteolin/pharmacology , Antiviral Agents/pharmacology
6.
Virus Res ; 326: 199063, 2023 03.
Article in English | MEDLINE | ID: mdl-36738933

ABSTRACT

Feline herpesvirus-1 (FHV-1) is responsible for approximately 50% of diagnosed viral upper respiratory tract disease in cats. The virus infects and replicates in the epithelial cells located in upper respiratory tract. Commercial vaccines do not protect cats from the infection itself or development of latency. Previously, our lab developed a cell culture model using primary feline respiratory epithelial cells (pFRECs) to study respiratory innate immunity to FHV-1 and FHV-1 deletion mutants. However, the numbers of pFRECs that can be obtained per cat is limited. To improve the usage of respiratory epithelial 3D cultures in FHV-1 research, the present study immortalized feline respiratory epithelial cells (iFRECs) and characterized them morphologically and immunologically and evaluated the response to FHV-1 infection. Immortalization was achieved by transduction with Lenti-SV40T and Lenti-HPV E6/E7. Immortalized FRECs could be successfully subcultured for >20 passages, with positive gene expression of SV40T and HPV E6/E7. Immortalized FRECs expressed similar innate immunity-associated genes compared to pFRECs, including genes of Toll-like receptors (TLR1-9), interferon induced genes (OAS1, OAS3, IFI44, IFITM1, IFIT1), chemokines (CCL2, CCL3, CXCL8), pro-inflammatory and regulatory cytokines (IL-6, IL-4, IL-5, IL-12, and IL-18), and antimicrobials (DEFß10, DEFß4B). Finally, FHV-1 inoculation resulted in characteristic cytopathic effects starting at 24 hpi, with more than 80% cells detached and lysed by 72 hpi. Overall FHV-1 growth kinetics in iFRECs resembled the kinetics observed in pFRECs. In conclusion, we demonstrated that iFRECs are a useful tool to study feline respiratory disease including but not limited to FHV-1.


Subject(s)
Cat Diseases , Cell Line , Herpesviridae Infections , Varicellovirus , Animals , Cats , Cat Diseases/virology , Cytokines/genetics , Epithelial Cells , Herpesviridae Infections/veterinary , Varicellovirus/genetics
7.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36796300

ABSTRACT

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Coronavirus 3C Proteases , Antiviral Agents/chemistry
8.
Front Microbiol ; 13: 1031204, 2022.
Article in English | MEDLINE | ID: mdl-36246297

ABSTRACT

The SARS-CoV-2 pandemic and the urgent need for massive antiviral testing highlighted the lack of a good cell-based assay that allowed for a fast, automated screening of antivirals in high-throughput content with minimal handling requirements in a BSL-3 environment. The present paper describes the construction of a green fluorescent substrate that, upon cleavage by the SARS-CoV-2 main protease, re-localizes from the cytoplasm in non-infected cells to the nucleus in infected cells. The construction was stably expressed, together with a red fluorescent nuclear marker, in a highly susceptible clone derived from Vero-81 cells. With this fluorescent reporter cell line, named F1G-red, SARS-CoV-2 infection can be scored automatically in living cells by comparing the patterns of green and red fluorescence signals acquired by automated confocal microscopy in a 384-well plate format. We show the F1G-red system is sensitive to several SARS-CoV-2 variants of concern and that it can be used to assess antiviral activities of compounds in dose-response experiments. This high-throughput system will provide a reliable tool for antiviral screening against SARS-CoV-2.

9.
Nat Genet ; 54(8): 1090-1102, 2022 08.
Article in English | MEDLINE | ID: mdl-35879413

ABSTRACT

CRISPR knockout (KO) screens have identified host factors regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Here, we conducted a meta-analysis of these screens, which showed a high level of cell-type specificity of the identified hits, highlighting the necessity of additional models to uncover the full landscape of host factors. Thus, we performed genome-wide KO and activation screens in Calu-3 lung cells and KO screens in Caco-2 colorectal cells, followed by secondary screens in four human cell lines. This revealed host-dependency factors, including AP1G1 adaptin and ATP8B1 flippase, as well as inhibitors, including mucins. Interestingly, some of the identified genes also modulate Middle East respiratory syndrome coronavirus (MERS-CoV) and seasonal human coronavirus (HCoV) (HCoV-NL63 and HCoV-229E) replication. Moreover, most genes had an impact on viral entry, with AP1G1 likely regulating TMPRSS2 activity at the plasma membrane. These results demonstrate the value of multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential targets for therapeutic interventions.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , COVID-19/genetics , Caco-2 Cells , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Seasons
10.
PLoS Pathog ; 18(5): e1010498, 2022 05.
Article in English | MEDLINE | ID: mdl-35587469

ABSTRACT

Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antiviral activity in Vero-81 cells. Among them, clofoctol, an antibacterial drug used for the treatment of bacterial respiratory tract infections, was further investigated due to its favorable safety profile and pharmacokinetic properties. Notably, the peak concentration of clofoctol that can be achieved in human lungs is more than 20 times higher than its IC50 measured against SARS-CoV-2 in human pulmonary cells. This compound inhibits SARS-CoV-2 at a post-entry step. Lastly, therapeutic treatment of human ACE2 receptor transgenic mice decreased viral load, reduced inflammatory gene expression and lowered pulmonary pathology. Altogether, these data strongly support clofoctol as a therapeutic candidate for the treatment of COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Chlorobenzenes , Chlorocebus aethiops , Cresols , Humans , Lung , Mice , Vero Cells
11.
Antimicrob Agents Chemother ; 66(2): e0158121, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34807755

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the need for broad-spectrum antivirals against coronaviruses (CoVs). Here, pheophorbide a (Pba) was identified as a highly active antiviral molecule against human CoV-229E after bioguided fractionation of plant extracts. The antiviral activity of Pba was subsequently shown for SARS-CoV-2 and Middle East respiratory syndrome coronavirus (MERS-CoV), and its mechanism of action was further assessed, showing that Pba is an inhibitor of coronavirus entry by directly targeting the viral particle. Interestingly, the antiviral activity of Pba depends on light exposure, and Pba was shown to inhibit virus-cell fusion by stiffening the viral membrane, as demonstrated by cryoelectron microscopy. Moreover, Pba was shown to be broadly active against several other enveloped viruses and reduced SARS-CoV-2 and MERS-CoV replication in primary human bronchial epithelial cells. Pba is the first described natural antiviral against SARS-CoV-2 with direct photosensitive virucidal activity that holds potential for COVID-19 therapy or disinfection of SARS-CoV-2-contaminated surfaces.


Subject(s)
Biological Products , COVID-19 , Middle East Respiratory Syndrome Coronavirus , Antiviral Agents/pharmacology , Biological Products/pharmacology , Cryoelectron Microscopy , Humans , SARS-CoV-2
12.
Res Sq ; 2021 May 27.
Article in English | MEDLINE | ID: mdl-34075371

ABSTRACT

Several genome-wide CRISPR knockout screens have been conducted to identify host factors regulating SARS-CoV-2 replication, but the models used have often relied on overexpression of ACE2 receptor. Additionally, such screens have yet to identify the protease TMPRSS2, known to be important for viral entry at the plasma membrane. Here, we conducted a meta-analysis of these screens and showed a high level of cell-type specificity of the identified hits, arguing for the necessity of additional models to uncover the full landscape of SARS-CoV-2 host factors. We performed genome-wide knockout and activation CRISPR screens in Calu-3 lung epithelial cells, as well as knockout screens in Caco-2 intestinal cells. In addition to identifying ACE2 and TMPRSS2 as top hits, our study reveals a series of so far unidentified and critical host-dependency factors, including the Adaptins AP1G1 and AP1B1 and the flippase ATP8B1. Moreover, new anti-SARS-CoV-2 proteins with potent activity, including several membrane-associated Mucins, IL6R, and CD44 were identified. We further observed that these genes mostly acted at the critical step of viral entry, with the notable exception of ATP8B1, the knockout of which prevented late stages of viral replication. Exploring the pro- and anti-viral breadth of these genes using highly pathogenic MERS-CoV, seasonal HCoV-NL63 and -229E and influenza A orthomyxovirus, we reveal that some genes such as AP1G1 and ATP8B1 are general coronavirus cofactors. In contrast, Mucins recapitulated their known role as a general antiviral defense mechanism. These results demonstrate the value of considering multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential new targets for therapeutic interventions.

13.
bioRxiv ; 2021 May 21.
Article in English | MEDLINE | ID: mdl-34031654

ABSTRACT

Several genome-wide CRISPR knockout screens have been conducted to identify host factors regulating SARS-CoV-2 replication, but the models used have often relied on overexpression of ACE2 receptor. Additionally, such screens have yet to identify the protease TMPRSS2, known to be important for viral entry at the plasma membrane. Here, we conducted a meta-analysis of these screens and showed a high level of cell-type specificity of the identified hits, arguing for the necessity of additional models to uncover the full landscape of SARS-CoV-2 host factors. We performed genome-wide knockout and activation CRISPR screens in Calu-3 lung epithelial cells, as well as knockout screens in Caco-2 intestinal cells. In addition to identifying ACE2 and TMPRSS2 as top hits, our study reveals a series of so far unidentified and critical host-dependency factors, including the Adaptins AP1G1 and AP1B1 and the flippase ATP8B1. Moreover, new anti-SARS-CoV-2 proteins with potent activity, including several membrane-associated Mucins, IL6R, and CD44 were identified. We further observed that these genes mostly acted at the critical step of viral entry, with the notable exception of ATP8B1, the knockout of which prevented late stages of viral replication. Exploring the pro- and anti-viral breadth of these genes using highly pathogenic MERS-CoV, seasonal HCoV-NL63 and -229E and influenza A orthomyxovirus, we reveal that some genes such as AP1G1 and ATP8B1 are general coronavirus cofactors. In contrast, Mucins recapitulated their known role as a general antiviral defense mechanism. These results demonstrate the value of considering multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential new targets for therapeutic interventions.

14.
J Biol Chem ; 294(39): 14406-14421, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31399512

ABSTRACT

Coronavirus M proteins represent the major protein component of the viral envelope. They play an essential role during viral assembly by interacting with all of the other structural proteins. Coronaviruses bud into the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), but the mechanisms by which M proteins are transported from their site of synthesis, the ER, to the budding site remain poorly understood. Here, we investigated the intracellular trafficking of the Middle East respiratory syndrome coronavirus (MERS-CoV) M protein. Subcellular localization analyses revealed that the MERS-CoV M protein is retained intracellularly in the trans-Golgi network (TGN), and we identified two motifs in the distal part of the C-terminal domain as being important for this specific localization. We identified the first motif as a functional diacidic DxE ER export signal, because substituting Asp-211 and Glu-213 with alanine induced retention of the MERS-CoV M in the ER. The second motif, 199KxGxYR204, was responsible for retaining the M protein in the TGN. Substitution of this motif resulted in MERS-CoV M leakage toward the plasma membrane. We further confirmed the role of 199KxGxYR204 as a TGN retention signal by using chimeras between MERS-CoV M and the M protein of infectious bronchitis virus (IBV). Our results indicated that the C-terminal domains of both proteins determine their specific localization, namely TGN and ERGIC/cis-Golgi for MERS-M and IBV-M, respectively. Our findings indicate that MERS-CoV M protein localizes to the TGN because of the combined presence of an ER export signal and a TGN retention motif.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/chemistry , Protein Sorting Signals , Viral Matrix Proteins/chemistry , trans-Golgi Network/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Protein Transport , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
15.
Vet Microbiol ; 229: 130-137, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30642588

ABSTRACT

In the past, bovine herpesvirus 4 (BoHV-4) has been suggested to be associated with metritis and endometritis. However, not many field studies investigated the association between BoHV-4 and subclinical endometritis (SCE). In the present study, the association between the intrauterine presence of BoHV-4 and SCE diagnosed during artificial insemination (AI) was examined on two dairy farms in Belgium. An immunoperoxidase monolayer assay (IPMA) and an enzyme-linked immuno sorbent assay (ELISA) were used to screen the serum for anti-BoHV-4 antibodies. A SYBR green based one step real time qPCR was used to detect and quantify BoHV-4 (ORF20) in nasal, uterine and vaginal samples collected at AI. A reverse transcription qPCR (RT-qPCR) was used to detect mRNA (gB) as proof of a productive BoHV-4 infection. BoHV-4 was detected in 39.4% (farm A)/23.8% (farm B) of the nasal samples, 48.5% (farm A)/19.0% (farm B) of the uterine samples and 51.5% (farm A)/42.9% (farm B) of the vaginal samples. Active replication was only detected in farm A in 38.5% of the BoHV-4 positive nasal samples and in 5.9% positive cases of the vaginal samples. The prevalence of SCE diagnosed at AI was 45.5% and 42.9% in farm A and farm B, respectively. The presence of SCE was associated with a reduced pregnancy outcome at artificial insemination (AI) (P<0.001). The occurrence of SCE at AI was not associated with the presence of latent or productive BoHV4 infections in the uterus nor in the vagina and nose (P>0.05).


Subject(s)
Cattle Diseases/virology , Endometritis/veterinary , Herpesviridae Infections/veterinary , Herpesvirus 4, Bovine/isolation & purification , Insemination, Artificial/veterinary , Tumor Virus Infections/veterinary , Animals , Belgium/epidemiology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/transmission , DNA, Viral/isolation & purification , Endometritis/epidemiology , Endometritis/virology , Female , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Insemination, Artificial/adverse effects , Seroepidemiologic Studies , Tumor Virus Infections/epidemiology , Tumor Virus Infections/virology
16.
Sci Rep ; 8(1): 15195, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315177

ABSTRACT

A stable culture of primary porcine enterocytes is necessary to study porcine enteric virus replication characteristics. Because the direct cultivation of primary porcine enterocytes is difficult, alternatives have to be considered. As subepithelial myofibroblasts secrete extracellular matrix and growth factors contributing to the attachment, proliferation and differentiation of epithelial cells, co-cultures of primary porcine enterocytes (ileocytes and colonocytes) with myofibroblasts were developed and evaluated for their susceptibility to enteric viruses. First, it was demonstrated that the co-cultured ileocytes and colonocytes were susceptible to an archival rotavirus strain RVA/pig-tc/BEL/RV277/1977/G1P[7] and different other rotavirus genotypes (fecal samples containing G5P[7], G5P[13], G9P[23], G4P[6]). Next, the TGEV Purdue strain infected both ileocytes and colonocytes whereas the Miller strain only infected ileocytes. Last, the PEDV CV777 Vero adapted and non-adapted (fecal suspension) strains could infect co-cultured ileocytes but not colonocytes. The infectivity of the CV777 Vero adapted strain was higher when the cells were cultured without fetal bovine serum and the CV777 fecal suspension only infected the ileocytes cultured without fetal bovine serum. In conclusion, a novel co-culture of porcine enterocytes with myofibroblasts was established, which can be used for the investigation of the replication of enteric viruses.


Subject(s)
Coculture Techniques/methods , Coronavirus/growth & development , Enterocytes/virology , Myofibroblasts/virology , Rotavirus/growth & development , Swine/virology , Animals , Colon/pathology , Colon/virology , Diarrhea/virology , Enterocytes/pathology , Epithelial Cells/ultrastructure , Epithelial Cells/virology , Feces/virology , Genotype , Ileum/pathology , Ileum/virology , Kinetics , Myofibroblasts/pathology , Rotavirus/genetics , Virus Replication
17.
PLoS One ; 12(10): e0186343, 2017.
Article in English | MEDLINE | ID: mdl-29036224

ABSTRACT

Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.


Subject(s)
Gene Expression Regulation , Mesenchymal Stem Cells/cytology , Monocytes/cytology , Sialic Acid Binding Ig-like Lectin 1/metabolism , Adipocytes/cytology , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Coculture Techniques , Lung/cytology , Lymph Nodes/cytology , Macrophages/cytology , Mesenchymal Stem Cells/metabolism , Nasal Mucosa/cytology , Spleen/cytology , Swine
18.
Vet Immunol Immunopathol ; 191: 44-50, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28895865

ABSTRACT

Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell cultures were successfully established and characterized and they supported the proliferation of red bone marrow hematopoietic cells, which finally differentiated into monocytic cells and CD4+ and CD8+ cells.


Subject(s)
Cell Differentiation/physiology , Hematopoietic Stem Cells/physiology , Mesenchymal Stem Cells/physiology , Animals , Cell Proliferation , Cells, Cultured , Coculture Techniques/veterinary , Flow Cytometry/veterinary , Fluorescent Antibody Technique/veterinary , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Microscopy, Confocal/veterinary , Swine/blood , Swine/physiology
19.
Virus Res ; 227: 249-260, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27836726

ABSTRACT

Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission.


Subject(s)
Epitopes/immunology , Gene Products, env/genetics , Gene Products, gag/genetics , Immunodeficiency Virus, Feline/physiology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Viral/immunology , Cats , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Cells, Cultured , Epitopes/chemistry , Feline Acquired Immunodeficiency Syndrome/immunology , Feline Acquired Immunodeficiency Syndrome/virology , Gene Expression , Gene Products, env/chemistry , Gene Products, env/immunology , Gene Products, env/metabolism , Gene Products, gag/chemistry , Gene Products, gag/immunology , Gene Products, gag/metabolism , Glycosylation , Leukocytes, Mononuclear/immunology , Protein Binding/immunology , Protein Interaction Domains and Motifs/immunology , Protein Multimerization
20.
J Gen Virol ; 97(10): 2633-2642, 2016 10.
Article in English | MEDLINE | ID: mdl-27543142

ABSTRACT

One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.


Subject(s)
Cell Adhesion Molecules/genetics , Coronavirus, Feline/physiology , Endothelial Cells/virology , Feline Infectious Peritonitis/virology , Kidney Cortex/virology , Monocytes/virology , Animals , Cats , Cell Adhesion , Cell Adhesion Molecules/immunology , Cells, Cultured , Coronavirus, Feline/genetics , E-Selectin/genetics , E-Selectin/immunology , Endothelial Cells/cytology , Endothelial Cells/immunology , Feline Infectious Peritonitis/genetics , Feline Infectious Peritonitis/immunology , Feline Infectious Peritonitis/physiopathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Kidney Cortex/cytology , Kidney Cortex/immunology , Monocytes/immunology , P-Selectin/genetics , P-Selectin/immunology , Up-Regulation , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...