Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 651: 123740, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38145781

ABSTRACT

Drugs with properties against oxidative and carbonyl stresses are potential candidates to prevent dry age-related macular degeneration (Dry-AMD) and inherited Stargardt disease (STGD1). Previous studies have demonstrated the capacity of a new lipophenol drug: 3-O-DHA-7-O-isopropyl-quercetin (Q-IP-DHA) to protect ARPE19 and primary rat RPE cells respectively from A2E toxicity and under oxidative and carbonyl stress conditions. In this study, first, a new methodology has been developed to access gram scale of Q-IP-DHA. After classification of the lipophenol as BCS Class IV according to physico-chemical and biopharmaceutical properties, an intravenous formulation with micelles (M) and an oral formulation using lipid nanocapsules (LNC) were developed. M were formed with Kolliphor® HS 15 and saline solution 0.9 % (mean size of 16 nm, drug loading of 95 %). The oral formulation was optimized and successfully allowed the formation of LNC (25 nm, 96 %). The evaluation of the therapeutic potency of Q-IP-DHA was performed after IV administration of micelles loaded with Q-IP-DHA (M-Q-IP-DHA) at 30 mg/kg and after oral administration of LNC loaded with Q-IP-DHA (LNC-Q-IP-DHA) at 100 mg/kg in mice. Results demonstrated photoreceptor protection after induction of retinal degeneration by acute light stress making Q-IP-DHA a promising preventive candidate against dry-AMD and STGD1.


Subject(s)
Macular Degeneration , Nanocapsules , Mice , Rats , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Micelles , Macular Degeneration/drug therapy , Macular Degeneration/prevention & control , Oxidation-Reduction , Nanocapsules/chemistry , Retinal Pigment Epithelium , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...