Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 85(12): 2714-2722, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36512509

ABSTRACT

A series of novel macrolides were discovered from the culture supernatant of the rare soil actinobacteria Dactylosporangium fulvum and named dactylosporolides A-C. The structure and absolute configuration of these dactylosporolides were defined using a combination of NMR structural elucidation and analysis of the dactylosporolide biosynthetic gene cluster. Together these data revealed dactylosporolides to be composed of a central 22-membered macrolactone with an internal hemiketal ring and a protruding ketide tail that were (poly)glycosylated at two distal parts. While bearing no antibiotic activity, these dactylosporolides displayed activity against Plasmodium falciparum 3D7.


Subject(s)
Actinobacteria , Micromonosporaceae , Macrolides/pharmacology , Macrolides/chemistry , Actinobacteria/genetics , Glycosylation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Appl Microbiol Biotechnol ; 105(13): 5541-5551, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34189614

ABSTRACT

Rare actinomycetes are likely treasure troves for bioactive natural products, and it is therefore important that we enrich our understanding of biosynthetic potential of these relatively understudied bacteria. Dactylosporangium are a genus of such rare Actinobacteria that are known to produce a number of important antibacterial compounds, but for which there are still no fully assembled reference genomes, and where the extent of encoded biosynthetic capacity is not defined. Dactylosporangium vinaceum (NRRL B-16297) is known to readily produce a deep wine red-coloured diffusible pigment of unknown origin, and it was decided to define the chemical identity of this natural product pigment, and in parallel use whole genome sequencing and transcriptional analysis to lay a foundation for understanding the biosynthetic capacity of these bacteria. Results show that the produced pigment is made of various rubrolone conjugates, the spontaneous product of the reactive pre-rubrolone, produced by the bacterium. Genome and transcriptome analysis identified the highly expressed biosynthetic gene cluster (BGC) for pre-rubrolone. Further analysis of the fully assembled genome found it to carry 24 additional BGCs, of which the majority were poorly transcribed, confirming the encoded capacity of this bacterium to produce natural products but also illustrating the main bottleneck to exploiting this capacity. Finally, analysis of the potential environmental role of pre-rubrolone found it to react with a number of amine containing antibiotics, antimicrobial peptides and siderophores pointing to its potential role as a "minesweeper" of xenobiotic molecules in the bacterial environment. KEY POINTS: • D. vinaceum encodes many BGC, but the majority are transcriptionally silent. • Chemical screening identifies molecules that modulate rubrolone production. • Pre-rubrolone is efficient at binding and inactivating many natural antibiotics.


Subject(s)
Actinobacteria , Biological Products , Micromonosporaceae , Actinobacteria/genetics , Multigene Family , Pyridines
SELECTION OF CITATIONS
SEARCH DETAIL
...