Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 448: 79-87, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25721859

ABSTRACT

An efficient one-step process to synthesize highly porous (Ca-alginate-SiO2-polycation) shell: (Na-alginate-SiO2) core hybrid beads for cell encapsulation, yielding a reusable long-life photosynthetically active material for a sustainable manufacture of high-value metabolites is presented. Bead formation is based on crosslinking of an alginate biopolymer and mineralisation of silicic acid in combination with a coacervation process between a polycation and the silica sol, forming a semi-permeable external membrane. The excellent mechanical strength and durability of the monodispersed beads and the control of their porosity and textural properties is achieved by tailoring the silica and alginate loading, polycation concentration and incubation time during coacervation. This process has led to the formation of a remarkably robust hybrid material that confers exceptional protection to live cells against sheer stresses and contamination in a diverse range of applications. Dunaliella tertiolecta encapsulated within this hybrid core-shell system display high photosynthetic activity over a long duration (>1 year). This sustainable biotechnology could find use in high value chemical harvests and biofuel cells to photosynthetic solar cells (energy transformation, electricity production, water splitting technologies). Furthermore the material can be engineered into various forms from spheres to variable thickness films, broadening its potential applications.


Subject(s)
Alginates/chemistry , Chlorophyta/physiology , Photosynthesis , Polyamines/chemistry , Silicon Dioxide/chemistry , Alginates/chemical synthesis , Cells, Immobilized/physiology , Glucuronic Acid/chemical synthesis , Glucuronic Acid/chemistry , Hexuronic Acids/chemical synthesis , Hexuronic Acids/chemistry , Photobioreactors , Polyamines/chemical synthesis , Polyelectrolytes , Porosity , Silicon Dioxide/chemical synthesis
2.
J Colloid Interface Sci ; 358(1): 136-45, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21420099

ABSTRACT

Highly sensitive and selective nanosensor for labile iron pool (LIP) determination, has been designed and prepared by immobilization of Fluoresceine-Desferrioxamine (Fl-DFO), a bifunctional fluoro-siderophore probe molecule with great affinity for iron ions (pKf=30.7), into highly ordered mesoporous silica structure. Different immobilization methods of Fl-DFO molecules, such as their encapsulation in surfactant micelles used as templating agents for the synthesis of mesoporous silica, direct impregnation into the mesochannels of as-synthesized mesoporous silica and their surface anchoring by covalent binding with propylamine groups implanted by post-synthesis on the internal surface of mesochannels, have been explored. Each nanohybrid has been fully characterized by small angle XRD, TEM, SEM, solid state (29)Si and (13)C MAS NMR and N(2) adsorption-desorption. The fluorescence properties of nanohybrids obtained have been correlated with the immobilization methods, generating interesting information concerning the localization of Fl-DFO molecules in the channels of mesoporous silica. The leaching of Fl-DFO molecules from mesoporous materials has been investigated. The nanosensor prepared by surface anchoring of Fl-DFO at the internal surface of mesochannels showed high performances with no leaching effect and high sensitivity in regards to its responses to ferric ions. Its fluorescence intensity decreased as soon as first Fe(III) ions are in contact with this nanosensor. A linear relationship between the fluorescence intensity and the ferric ions concentration was observed in low micromolar range. The selectivity of this nanosensor towards other metal ions has also been tested and shown its high affinity to ferric ions. This study can allow the design of a stable, portable, simple, regenerable and cost-effective nanosensor highly sensitive and selective for iron ions with detection limits in the range of cellular LIP in cells, e.g. lower micromolar range.


Subject(s)
Deferoxamine/chemistry , Fluorescein/chemistry , Iron/analysis , Nanostructures/chemistry , Silicon Dioxide/chemistry , Models, Molecular , Porosity , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...