Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Antimicrob Chemother ; 72(3): 801-804, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27999035

ABSTRACT

Objectives: The objectives of this observational study were to investigate plasma protein binding and to evaluate target attainment rates of vancomycin therapy in critically ill children. Patients and methods: Paediatric ICU patients, in whom intravenous intermittent dosing (ID) or continuous dosing (CD) with vancomycin was indicated, were included. Covariates on unbound vancomycin fraction and concentration were tested using a linear mixed model analysis and attainment of currently used pharmacokinetic/pharmacodynamic (PK/PD) targets was evaluated. Clinicaltrials.gov: NCT02456974. Results: One hundred and eighty-eight plasma samples were collected from 32 patients. The unbound vancomycin fraction (median = 71.1%; IQR = 65.4%-79.7%) was highly variable within and between patients and significantly correlated with total protein and albumin concentration, which were both decreased in our population. Total trough concentration (ID) and total concentration (CD) were within the aimed target concentrations in 8% of patients. The targets of AUC/MIC ≥400 and f AUC/MIC ≥200 were achieved in 54% and 83% of patients, respectively. Unbound vancomycin concentrations were adequately predicted using the following equation: unbound vancomycin concentration (mg/L) = 5.38 + [0.71 × total vancomycin concentration (mg/L)] - [0.085 × total protein concentration (g/L)]. This final model was externally validated using 51 samples from another six patients. Conclusions: The protein binding of vancomycin in our paediatric population was lower than reported in non-critically ill adults and exhibited large variability. Higher target attainment rates were achieved when using PK/PD indices based on unbound concentrations, when compared with total concentrations. These results highlight the need for protein binding assessment in future vancomycin PK/PD research.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Blood Proteins/metabolism , Critical Illness/therapy , Vancomycin/pharmacokinetics , Adolescent , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/therapeutic use , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Intensive Care Units , Linear Models , Male , Microbial Sensitivity Tests , Prospective Studies , Protein Binding , Vancomycin/blood , Vancomycin/metabolism , Vancomycin/therapeutic use
2.
J Antimicrob Chemother ; 72(3): 791-800, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27999040

ABSTRACT

Objectives: The objective of this study was to characterize cefazolin serum pharmacokinetics in children before, during and after cardiopulmonary bypass (CPB), in order to derive an evidence-based dosing regimen. Patients and methods: This study included children who received cefazolin before surgical incision, before cessation of CPB and after surgery. Blood samples of total and unbound cefazolin concentrations were collected before, during and after CPB. The cefazolin concentration-time profiles were analysed using population pharmacokinetic modelling and predictors for interindividual variability in pharmacokinetic parameters were investigated. Subsequently, optimized dosing regimens were developed using stochastic simulations. Clinicaltrials.gov: NCT02749981. Results: A total of 494 total and unbound cefazolin concentrations obtained from 56 children (aged 6 days to 15 years) were included. A two-compartment model with first-order elimination plus an additional compartment for the effect of CPB best described the data. Clearance (1.56 L/h), central volume (1.93 L) and peripheral volume (2.39 L) were allometrically scaled by body weight. The estimated glomerular filtration rate (eGFR) was identified as a covariate on clearance and the serum albumin concentration was associated with maximum protein binding capacity. Our simulations showed that an additional bolus dose at the start of CPB improves the PTA in typical patients from 59% to >94%. Prolonged surgery and preserved renal function (i.e. drop in eGFR <25%) had a negative impact on PTA. Conclusions: We propose an optimized dosing regimen for cefazolin during cardiac surgery in paediatric patients to avoid treatment failure due to inadequate antibiotic prophylaxis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Antibiotic Prophylaxis , Cardiopulmonary Bypass , Cefazolin/administration & dosage , Cefazolin/pharmacokinetics , Adolescent , Anti-Bacterial Agents/blood , Cefazolin/blood , Child , Child, Preschool , Computer Simulation , Dose-Response Relationship, Drug , Female , Humans , Infant , Infant, Newborn , Male , Population , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...