Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 123(30): 6588-6598, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31318551

ABSTRACT

The monomer-dimer equilibrium for insulin is one of the essential steps in forming the receptor-binding competent monomeric form of the hormone. Despite this importance, the thermodynamic stability, in particular for modified insulins, is quite poorly understood, in part, due to experimental difficulties. This work explores one- and two-dimensional infrared spectroscopy in the range of the amide-I band for the hydrated monomeric and dimeric wild-type hormone. It is found that for the monomer the frequency fluctuation correlation function (FFCF) and the one-dimensional infrared spectra are position sensitive. The spectra of the -CO probes at the dimerization interface (residues Phe24, Phe25, and Tyr26) split and indicate an asymmetry despite the overall (formal) point symmetry of the dimer structure. Also, the decay times of the FFCF for the same -CO probe in the monomer and the dimer can differ by up to 1 order of magnitude, for example, for residue PheB24, which is solvent exposed for the monomer but at the interface for the dimer. The spectroscopic shifts correlate approximately with the average number of hydration waters and the magnitude of the FFCF at time zero. However, this correlation is only qualitative due to the heterogeneous and highly dynamical environment. Based on density functional theory calculations, the dominant contribution for solvent-exposed -CO is found to arise from the surrounding water (∼75%), whereas the protein environment contributes considerably less. The results suggest that infrared spectroscopy is a positionally sensitive probe of insulin dimerization, in particular in conjunction with isotopic labeling of the probe.


Subject(s)
Insulin/chemistry , Molecular Dynamics Simulation , Spectrophotometry, Infrared/methods , Models, Molecular , Protein Conformation
2.
J Phys Chem B ; 122(28): 7038-7048, 2018 07 19.
Article in English | MEDLINE | ID: mdl-29916244

ABSTRACT

Insulin dimerization and aggregation play important roles in the endogenous delivery of the hormone. One of the important residues at the insulin dimer interface is PheB24, which is an invariant aromatic anchor that packs toward its own monomer inside a hydrophobic cavity formed by ValB12, LeuB15, TyrB16, CysB19, and TyrB26. Using molecular dynamics and free-energy simulations within explicit solvent, the structural and dynamical consequences of mutations of Phe at position B24 to glycine (Gly), alanine (Ala), and d-Ala and the des-PheB25 variant are quantified. Consistent with experiments, it is found that the Gly and Ala modifications lead to insulin dimers with reduced stability by 4 and 5 kcal/mol from thermodynamic integration and 4 and 8 kcal/mol from results using molecular mechanics-generalized Born surface area, respectively. Given the experimental difficulties to quantify the thermodynamic stability of modified insulin dimers, such computations provide a valuable complement. Interestingly, the Gly mutant exists as a strongly and a weakly interacting dimer. Analysis of the molecular dynamics simulations shows that this can be explained by water molecules that replace direct monomer-monomer H-bonding contacts at the dimerization interface involving residues B24 to B26. It is concluded that such solvent molecules play an essential role and must be included in future insulin dimerization studies.


Subject(s)
Insulin/chemistry , Water/chemistry , Hydrogen Bonding , Insulin/genetics , Insulin/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Stability , Thermodynamics
3.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1383-1394, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28844745

ABSTRACT

Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion. A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI.


Subject(s)
Endoplasmic Reticulum/enzymology , Molecular Chaperones/chemistry , Molecular Dynamics Simulation , Protein Disulfide-Isomerases/chemistry , Animals , Biocatalysis , Conserved Sequence , Gene Expression , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Oxidation-Reduction , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Domains , Protein Folding , Protein Structure, Secondary , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Structural Homology, Protein
4.
Chem Commun (Camb) ; 48(98): 11978-80, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23128555

ABSTRACT

The synthesis of (3E)-1-benzyl-3-[(2-oxopyridin-1(2H)-yl)methylidene]piperidine-2,6-dione 5 from N-benzylglutarimide was achieved in three steps. The asymmetric hydrogenation of 4 gave either the product of partial reduction (10) or full reduction (13), depending on the catalyst which was employed, in high ee in each case. Attempts at asymmetric transfer hydrogenation (ATH) of resulted in formation of a racemic product.


Subject(s)
Benzyl Compounds/chemical synthesis , Piperidones/chemistry , Piperidones/chemical synthesis , Benzyl Compounds/chemistry , Hydrogenation , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...