Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(4): 046004, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23238440

ABSTRACT

A detailed magnetization study for the novel FeSe superconductor is carried out to investigate the behavior of the intrinsic magnetic susceptibility χ in the normal state with temperature and under hydrostatic pressure. The temperature dependences of χ and its anisotropy Δχ = χ([parallel]) - χ([perpendicular]) are measured for FeSe single crystals in the temperature range 4.2-300 K, and a substantial growth of susceptibility with temperature is revealed. The observed anisotropy Δχ is very large and comparable to the averaged susceptibility at low temperatures. For a polycrystalline sample of FeSe, the significant pressure effect on χ is determined to be essentially dependent on temperature. Ab initio calculations of the pressure-dependent electronic structure and magnetic susceptibility indicate that FeSe is close to magnetic instability, with dominating enhanced spin paramagnetism. The calculated paramagnetic susceptibility exhibits a strong dependence on the unit cell volume and especially on the height Z of chalcogen species from the Fe plane. The change of Z under pressure determines a large positive pressure effect on χ, which is observed at low temperatures. It is shown that the literature experimental data on the strong and nonmonotonic pressure dependence of the superconducting transition temperature in FeSe correlate qualitatively with the calculated behavior of the density of electronic states at the Fermi level.

2.
J Phys Condens Matter ; 23(32): 325701, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21795766

ABSTRACT

The magnetic susceptibility χ of FeTe(x) compounds (x approximately 1.0) was studied under hydrostatic pressure up to 2 kbar at fixed temperatures of 55, 78 and 300 K. Measurements were taken both for polycrystalline and single crystalline samples. At ambient pressure, with decreasing temperature a drastic drop in χ(T) was confirmed at T approximately 70 K, which appears to be closely related to antiferromagnetic ordering. The obtained results have revealed a puzzling growth of susceptibility under pressure, and this effect is enhanced by lowering the temperature. To shed light on the pressure effects in the magnetic properties of FeTe, ab initio calculations of its volume dependent band structure and the exchange enhanced paramagnetic susceptibility were performed within the local spin density approximation.

SELECTION OF CITATIONS
SEARCH DETAIL
...