Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(1): 29-37, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36595451

ABSTRACT

The current project aims to apply the virtues of minimalism to examine the catalytic ability of commercially organic compounds of small chemical structures to catalyze the coupling reaction between carbon dioxide and propylene oxide (PO) under mild conditions. The proposed catalysts are pyridinium iodide (A), 2-hydroxypyridinium iodide (B), and piperidinium iodide (C), where their structure is based on cooperative acidic and nucleophilic motifs. The quantum chemistry model, M062X-D3/def2-TZVP//M062X-D3/def2-SVPP, was used to understand the reaction mechanism and the catalytic performance. Since the coupling reaction was performed under excess PO, we proposed that PO serves as a reactant and solvent. Therefore, calculations were performed in gas and liquid phases for comparison. The findings indicated that the rate-determining step depends on the chemical structure of the catalyst and whether the phase is a gas or liquid phase. In general, modeling in the liquid phase produces potential energy surfaces of lower energy barriers. The noncovalent interactions reflect the role of hydrogen bonding in controlling the kinetic behavior of the coupling reaction. Based on the finding, catalyst A is the best candidate for transforming CO2 into cyclic carbonates.

2.
Phys Chem Chem Phys ; 23(47): 26919-26930, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34825905

ABSTRACT

The aim of this work is to develop single-component bifunctional organic catalysts capable of effective coupling reactions between CO2 and propylene epoxide (PO) under mild conditions using density functional theory (DFT) calculations. The dual functionalities of the target catalysts come from their inclusion of a hydroxyl-containing electrophile and the nucleophilicity of iodide ion. In this respect, a series of hydroxyl-functionalized quaternary onium-based ionic liquids were studied using M062X-D3/def2-TZVP//M062X-D3/def2-SVPP model chemistry. The design of catalysts was based on tailoring two structural factors; the first one is the onium center of pnictogens (N, P, As, Sb and Bi), and the second one is the number of hydrogen bond donor groups (n = 1-3). The proposed catalysts were examined by investigation of their catalytic mechanisms to afford the cyclic carbonate. Additionally, the highest active transition state, along with the potential energy difference, was examined using non-covalent interaction (NCI) analysis. Also, the activation strain model (ASM) was used to explain the kinetic behavior of PO activation. The findings showed that the ring-opening step of PO is always the critical step of the reaction. Among the suggested catalysts, the results indicated that the dihydroxyl ammonium-based catalyst (2OH-NI) is a good choice for this catalysis under mild and solvent-free conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...