Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 27(22): 10815-10830, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38039010

ABSTRACT

OBJECTIVE: This study aims to explore underlying molecular variations in the expression of miRNAs in kidney tissues of ginger-treated and non-treated cyclophosphamide (CP)-intoxicated rats. MATERIALS AND METHODS:   A total of 40 adult male Wistar rats were randomly divided into four groups of 10 each: Group I (control: received normal food and water), Group II (received ginger at a dose of 300 mg/kg), Group III (received CP 75 mg/kg, i.p.), and Group IV (received the same dose of CP and ginger extract).  Rats received a single injection of 75 mg/kg CP on days 3, 4, 5, 19, 20, and 21. In CP-intoxicated rats, the treatment with ginger extract at a dose of 300 mg/kg was received by oral gavage starting seven days before CP and continuing throughout the duration of the experiment for four weeks. Molecular variations in the expression of miRNAs, apoptotic genes, histological kidney damage, and abnormal kidney function in control, ginger, and CP-intoxicated rats were identified by using real-time RT-PCR Analysis, immunohistochemical, and colorimetric assays. In addition, HPLC analysis and liquid chromatography spectrophotometry analysis using Diphenyl-1-picrylhydrazyl (DPPH) radical, and Β-Carotene-linoleic acid reagents were applied respectively for in-vitro screening of phytoconstituents and antioxidant activity for ginger extract. RESULTS: The kidney tissues of CP-intoxicated rats displayed an increase in lipid peroxidation marker malonaldehyde (MDA), DNA damage, and fibrosis markers like hyaluronic acid (HA) and hydroxyproline Hypx) with a decrease in the superoxide dismutase (SOD) and total antioxidant capacity (TAC). In addition, molecular expressions of mRNA fibrotic genes such as collagen, type 1, alpha 1 (COL1A1), and α-smooth muscle actin (αSMA). Molecular expressions of levels of B-cell lymphoma 2 (BCl-2) mRNA gene were down-regulated, and the expression of mRNA apoptotic; BCL2 associated X gene (Bax), caspase-3, Bax/BCl-2 ratio genes were significantly up-regulated respectively. Moreover, cellular oxidative genes, erythroid 2-related factor (Nrf2), and heme oxygenase-1 (HO-1) were down-regulated, respectively. The miR-155-5p, miR-34a-5p, miR-21-5p significantly increased while the miR-193b-3p, miR-455-3p, and miR-342-3p significantly decreased. Ginger also increased the expression of Nrf2, HO-1, and BCl-2 genes in the kidneys of rats induced with CP. In addition, active phytoconstituents, particularly 6]]-shogaol and 6]]-gingerol, were significantly identified in ginger extract using HPLC analysis. Antioxidant activity of these active metabolites were shown to be higher against in vitro free radicals (DPPH and Β-Carotene-linoleic acid), suggesting the potential antioxidant and antiapoptotic properties of ginger against CP-toxicity. CONCLUSIONS: Treatment with ginger in rats induced with CP resulted in significant improvement in the expression of certain molecular miRNAs. The kidney tissues of these rats showed a marked decrease in the expression of miR-155-5p, miR-34a-5p, and miR-21-5p, while the levels of miR-193b-3p, miR-455-3p, and miR-342-3p were observed to increase significantly. In conclusion, ginger can protect rats from CP-induced nephrotoxicity.


Subject(s)
Circulating MicroRNA , MicroRNAs , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Wistar , Circulating MicroRNA/metabolism , NF-E2-Related Factor 2/metabolism , bcl-2-Associated X Protein/metabolism , Linoleic Acid/metabolism , beta Carotene/metabolism , Cyclophosphamide/toxicity , Kidney/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , RNA, Messenger/metabolism
2.
BioTechnologia (Pozn) ; 104(4): 421-434, 2023.
Article in English | MEDLINE | ID: mdl-38213476

ABSTRACT

The Lythraceae family includes henna (Lawsonia inermis), which thrives in subtropical and tropical climates. One of its many and long-standing uses is in cosmetics as a pigment to color hair and nails. Additionally, it serves as a disinfectant against microbiological infections and has traditional applications in the textile industry, specifically for coloring wool and nylon. The dried leaves of henna contain a significant amount of lawsone, an active substance bestowing them with staining abilities. Environmental biotechnology, a subfield of biotechnology, engages in the production of biomass or renewable energy sources and the elimination of pollutants, utilizing either entire organisms or their by-products. Recent research indicates that henna, owing to its sustainability, abundant production, simplicity of preparation, low cost, and reputation for being safe and ecologically benign, is exceptionally well-suited to participate in the realm of environmental biotechnology. This review navigates through the most recent studies exploring the use of henna and its extracts for related purposes. These encompass a spectrum of applications, including but not limited to nanobiotechnology, fabric dyeing, corrosion resistance, colored solar cells, carbon dots, and new renewable energy exemplified by biofuel and biohydrogen. Furthermore, henna extracts have been deployed to function as antimicrobials and ward off dangerous insects.

3.
Pol J Microbiol ; 58(1): 37-41, 2009.
Article in English | MEDLINE | ID: mdl-19469284

ABSTRACT

Biosynthesis of biodegradable polymers polyhydroxyalkanotes (PHAs) have been studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHAs in wild type yeasts is not well documented. The purpose of this study was to screen yeast isolates collected from different ecosystems for their ability to accumulate PHAs. Identification of the isolates and characterization of PHAs produced by the positive isolates were investigated. One positive isolate (strain Y4) was identified by both API20C system and 18S rDNA sequencing. The data revealed that isolate Y4 belongs to the yeast genus Rhodotorula and exhibits 18S rDNA similarity value >99% to the species Rhodotorula minuta. Quantification of PHAs yield of strain Y4 in glucose, oleic acid and tween 60 containing medium for over a growth period of 96 h gave 2% of PHAs in biomass. The nature of produced PHAs was analyzed by infrared spectroscopy and nuclear magnetic resonance (1H and 13C NMR) and found to contain polyhydroxybutyrate and polyhydroxyvalerate (PHBV).


Subject(s)
Polyhydroxyalkanoates/biosynthesis , Yeasts/metabolism , Ecosystem , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Industrial Microbiology , Magnetic Resonance Spectroscopy , Mycological Typing Techniques , Phylogeny , Polyesters/chemistry , Polyesters/metabolism , Polyhydroxyalkanoates/chemistry , RNA, Fungal/genetics , RNA, Fungal/isolation & purification , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/isolation & purification , Rhodotorula/genetics , Rhodotorula/metabolism , Spectrophotometry, Infrared , Yeasts/classification , Yeasts/genetics
4.
Pol J Microbiol ; 57(3): 231-9, 2008.
Article in English | MEDLINE | ID: mdl-19004244

ABSTRACT

Compared with conventional synthetic flocculants, bioflocculants has special advantages such as safety, strong effect, biodegradable and harmlessness to humans and the environment, so they may potentially be applied in drinking and wastewater treatment, downstream processing, and fermentation processes. To utilize bioflocculants widely in industrial fields, it is desirable to find various microorganisms with high bioflocculant-producing ability and improve the flocculating efficiency of the bioflocculant. In the present study, screening of new flocculant-producing microorganisms was carried out using samples collected from different Qatari ecosystems. The flocculating activity of the novel bioflocculants produced by isolated microorganisms was investigated. A total of 5 g/l Kaolin suspension was used to measure the flocculating activity. Isolated bioflocculant-producing bacteria were identified by 16S rDNA analysis, using PCR with universal primers. Comparative analysis of the 16S rDNA sequence (approximately 550 bp) in the GenBank database revealed that these bacteria are related to the genus Bacillus. FT-IR spectrometry analysis of the extracted bioflocculants indicated the presence of carboxyl, hydroxyl and amino groups preferred for the flocculation process. Influences of pH and bioflocculant dosage on the flocculation were also examined. The maximum flocculating rates were observed at pH 7, 7 and 3 of the bioflocculants derived from strains QUST2, QUST6 and QUST9, respectively. However, 20.0 mg/l was the dose that gave the highest flocculating rate with all examined bioflocculants. The elemental analysis of examined bioflocculants revealed the mass proportion of C, H, N and S. Carbon and nitrogen contents of examined bioflocculants were in the range of 42-48% and 11-12%, respectively.


Subject(s)
Bacteria/metabolism , Ecosystem , Flocculation , Hydrogen-Ion Concentration , Qatar
SELECTION OF CITATIONS
SEARCH DETAIL
...