Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 143(16): 164309, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26520515

ABSTRACT

The photodissociation and laser assisted dissociation of the carbon monoxide dication X(3)Π CO(2+) into the (3)Σ(-) states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X (3)Π state are performed for 13 excited (3)Σ(-) states of CO(2+). The photodissociation cross section, calculated by time-dependent methods, shows that the C(+) + O(+) channels dominate the process in the studied energy range. The carbon monoxide dication CO(2+) is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground (3)Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this (3)Π state to a manifold of (3)Σ(-) excited states leading to numerous C(+) + O(+) channels and a single C(2+) + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the "laser distillation" strategy. Finally, the local pulse is compared with optimal control theory.

2.
Phys Chem Chem Phys ; 17(46): 30889-903, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26041466

ABSTRACT

The quantum dynamics of electron transfer in mixed-valence organic compounds is investigated using a reaction path model calibrated by constrained density functional theory (cDFT). Constrained DFT is used to define diabatic states relevant for describing the electron transfer, to obtain equilibrium structures for each of these states and to estimate the electronic coupling between them. The harmonic analysis at the diabatic minima yields normal modes forming the dissipative bath coupled to the electronic states. In order to decrease the system-bath coupling, an effective one dimensional vibronic Hamiltonian is constructed by partitioning the modes into a linear reaction path which connects both equilibrium positions and a set of secondary vibrational modes, coupled to this reaction coordinate. Using this vibronic model Hamiltonian, dissipative quantum dynamics is carried out using Redfield theory, based on a spectral density which is determined from the cDFT results. In a first benchmark case, the model is applied to a series of mixed-valence organic compounds formed by two 1,4-dimethoxy-3-methylphenylene fragments linked by an increasing number of phenylene bridges. This allows us to examine the coherent electron transfer in extreme situations leading to a ground adiabatic state with or without a barrier and therefore to the trapping of the charge or to an easy delocalization.


Subject(s)
Organic Chemicals/chemistry , Quantum Theory , Electron Transport , Electrons , Models, Chemical , Temperature
3.
J Chem Phys ; 142(13): 134304, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25854240

ABSTRACT

Following a recent proposal of L. Wang and D. Babikov [J. Chem. Phys. 137, 064301 (2012)], we theoretically illustrate the possibility of using the motional states of a Cd(+) ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schrödinger equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field which is able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state, and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.

4.
J Chem Phys ; 142(2): 024307, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25591353

ABSTRACT

We compare the strategy found by the optimal control theory in a complex molecular system according to the active subspace coupled to the field. The model is the isomerization during a Cope rearrangement of Thiele's ester that is the most stable dimer obtained by the dimerization of methyl-cyclopentadienenylcarboxylate. The crudest partitioning consists in retaining in the active space only the reaction coordinate, coupled to a dissipative bath of harmonic oscillators which are not coupled to the field. The control then fights against dissipation by accelerating the passage across the transition region which is very wide and flat in a Cope reaction. This mechanism has been observed in our previous simulations [Chenel et al., J. Phys. Chem. A 116, 11273 (2012)]. We compare here, the response of the control field when the reaction path is coupled to a second active mode. Constraints on the integrated intensity and on the maximum amplitude of the fields are imposed limiting the control landscape. Then, optimum field from one-dimensional simulation cannot provide a very high yield. Better guess fields based on the two-dimensional model allow the control to exploit different mechanisms providing a high control yield. By coupling the reaction surface to a bath, we confirm the link between the robustness of the field against dissipation and the time spent in the delocalized states above the transition barrier.


Subject(s)
Quantum Theory , Carboxylic Acids/chemistry , Dimerization , Isomerism , Models, Molecular , Molecular Conformation
5.
J Chem Phys ; 139(1): 014310, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23822306

ABSTRACT

We simulate the implementation of a 3-qubit quantum Fourier transform gate in the hyperfine levels of ultracold polar alkali dimers in their first two lowest rotational levels. The chosen dimer is (41)K(87)Rb supposed to be trapped in an optical lattice. The hyperfine levels are split by a static magnetic field. The pulses operating in the microwave domain are obtained by optimal control theory. We revisit the problem of phase control in information processing. We compare the efficiency of two optimal fields. The first one is obtained from a functional based on the average of the transition probabilities for each computational basis state but constrained by a supplementary transformation to enforce phase alignment. The second is obtained from a functional constructed on the phase sensitive fidelity involving the sum of the transition amplitudes without any supplementary constrain.

6.
J Phys Chem A ; 117(39): 9486-92, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23437906

ABSTRACT

We investigate the photodissociation of HeH(+) in the metastable triplet state as well as its formation through the inverse process, radiative association. In models of astrophysical plasmas, HeH(+) is assumed to be present only in the ground state, and the influence of the triplet state has not been explored. It may be formed by radiative association during collisions between a proton and metastable helium, which are present in significant concentrations in nebulae. The triplet state can also be formed by association of He(+) and H, although this process is less likely to occur. We compute the cross sections and rate coefficients corresponding to the photodissociation of the triplet state by UV photons from a central star using a wave packet method. We show that the photodissociation cross sections depend strongly on the initial vibrational state and that the effects of excited electronic states and nonadiabatic couplings cannot be neglected. We then calculate the cross section and rate coefficient for the radiative association of HeH(+) in the metastable triplet state.

7.
Phys Chem Chem Phys ; 15(3): 824-31, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23202808

ABSTRACT

Franzreb and Williams at Arizona State University detected recently the MgO(2+) molecular species in the gas phase. Here we report a very detailed theoretical investigation of the low-lying electronic states of this dication including their potentials, spin-orbit, rotational and radial couplings. Our results show that the potential energy curves of the dicationic electronic states have deep potential wells. This confirms that this dication does exist in the gas phase; it is a thermodynamically stable molecule in its ground state, and it has several excited long-lived metastable states. The potential energy curves are used then to predict a set of spectroscopic parameters for the bound states of MgO(2+). We have also incorporated these potentials, rotational and radial couplings in dynamical calculations to derive the cross sections for the charge transfer Mg(2+) + O → Mg(+) + O(+) reaction in the 1-10(3) eV collision energy domain via formation-decomposition of the MgO(2+) dication. Our work shows the role of MgO(2+) in the Earth ionosphere and more generally in atmospheric processes in solar planets, where this reaction efficiently participates in the predominance of Mg(+) cations in these media compared to Mg and Mg(2+).

8.
J Phys Chem A ; 116(46): 11273-82, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-22913754

ABSTRACT

In this work, we present optimal control calculations in a dissipative environment. To this end, the auxiliary density matrix method describing the dissipative quantum dynamics is combined with optimal control theory. The resulting approach, which is nonperturbative in the laser-system interaction, is applied to model the control of Cope's isomerization of the methyl-cyclopentadienylcarboxylate dimer, described as the motion along a one-dimensional reaction path. The construction of the reaction path model as well as the dipole moments required for the laser interaction are obtained from DFT quantum chemistry calculations. As a main result, we show that the proposed methodology, which includes the environment at the design stage of the control, leads to control fields which can react on dissipative effects during the dynamics and lead to an increased control objective, as compared to control fields obtained without dissipation. The chosen example is analyzed in detail, and the physical mechanisms of the control under dissipation are elucidated.


Subject(s)
Carboxylic Acids/chemistry , Quantum Theory , Dimerization , Lasers
9.
J Chem Phys ; 134(20): 204112, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21639429

ABSTRACT

We present a theoretical approach which consists of applying the strategy of local control to projectors based on asymptotic scattering states. This allows to optimize final state distributions upon laser excitation in cases where strong non-adiabatic effects are present. The approach, despite being based on a time-local formulation, can take non-adiabatic transitions that appear at later times fully into account and adopt a corresponding control strategy. As an example, we show various dissociation channels of HeH(+), a system where the ultrafast dissociation dynamics is determined by strong non-Born-Oppenheimer effects.

10.
J Chem Phys ; 128(19): 194308, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18500866

ABSTRACT

Following the scheme recently proposed by Remacle and Levine [Phys. Rev. A 73, 033820 (2006)], we investigate the concrete implementation of a classical full adder on two electronic states (X 1A1 and C 1B2) of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive (stimulated Raman adiabatic passage) excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neighboring rovibrational states and a finite rotational temperature that leads to a mixture for the initial state. It is shown that the logic processing of a full addition cycle can be realistically experimentally implemented on a picosecond time scale while the readout takes a few nanoseconds.

11.
J Chem Phys ; 128(6): 064110, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18282031

ABSTRACT

Within the context of vibrational molecular quantum computing, we investigate the implementation of a full addition of two binary digits and a carry that provides the sum and the carry out. Four qubits are necessary and they are encoded into four different normal vibrational modes of a molecule. We choose the bromoacetyl chloride molecule because it possesses four bright infrared active modes. The ground and first excited states of each mode form the one-qubit computational basis set. Two approaches are proposed for the realization of the full addition. In the first one, we optimize a pulse that implements directly the entire addition by a single unitary transformation. In the second one, we decompose the full addition in elementary quantum gates, following a scheme proposed by Vedral et al. [Phys. Rev. A 54, 147 (1996)]. Four elementary quantum gates are necessary, two two-qubit CNOT gates (controlled NOT) and two three-qubit TOFFOLI gates (controlled-controlled NOT). All the logic operations consist in one-qubit flip. The logic implementation is therefore quasiclassical and the readout is based on a population analysis of the vibrational modes that does not take the phases into account. The fields are optimized by the multitarget extension of the optimal control theory involving all the transformations among the 2(4) qubit states. A single cycle of addition without considering the preparation or the measure or copy of the result can be carried out in a very competitive time, on a picosecond time scale.

12.
J Chem Phys ; 126(24): 244505, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17614562

ABSTRACT

The quantum Deutsch-Jozsa algorithm is implemented by using vibrational modes of a two-dimensional double well. The laser fields realizing the different gates (NOT, CNOT, and HADAMARD) on the two-qubit space are computed by the multitarget optimal control theory. The stability of the performance index is checked by coupling the system to an environment. Firstly, the two-dimensional subspace is coupled to a small number Nb of oscillators in order to simulate intramolecular vibrational energy redistribution. The complete (2+Nb)D problem is solved by the coupled harmonic adiabatic channel method which allows including coupled modes up to Nb=5. Secondly, the computational subspace is coupled to a continuous bath of oscillators in order to simulate a confined environment expected to be favorable to achieve molecular computing, for instance, molecules confined in matrices or in a fullerene. The spectral density of the bath is approximated by an Ohmic law with a cutoff for some hundreds of cm(-1). The time scale of the bath dynamics (of the order of 10 fs) is then smaller than the relaxation time and the controlled dynamics (2 ps) so that Markovian dissipative dynamics is used.

13.
J Chem Phys ; 122(18): 184304, 2005 May 08.
Article in English | MEDLINE | ID: mdl-15918701

ABSTRACT

Quantum dynamics in a valley ridge inflection (VRI) point region is analyzed in the case of the Diels-Alder endo-dimerization of cyclopentadiene pointed out recently by [Caramella et al., J. Am. Chem. Soc. 124, 1130 (2002)]. The VRI point is located along the reaction path connecting the bispericyclic symmetrical transition structure put in evidence by Caramella et al. and the transition state of the Cope rearrangement. Dynamics is carried out by using constrained Hamiltonian methodology. The active coordinates are the first formed C-C bond length and the difference between the two other C-C bond lengths which achieve the dimerization as 4+2 or 2+4 adducts. A two-dimensional (2D) minimum-energy surface have been computed at the Becke 3 Lee-Yong-Parr6-31G* level. The energy landscape can be classified as an uphill ridge-pitchfork VRI bifurcation according to a recent classification of bifurcation events [W. Quapp, J. Mol. Struct. 695-696, 95 (2004)]. Dynamics does not describe the thermal reaction but concerns wave packets which could be prepared by pulse reagents, i.e., by coherent control. We analyze how the shape and initial location on the ground potential-energy surface are linked to the synchronous or asynchronous mechanism of the final step after the first transition state. We use a one-dimensional model of optimum control theory to check the feasibility of such a coherent preparation. The wave-packet evolution in the VRI domain is well explained by semiclassical predictions even with the negative curvature of the unstable ridge. Finally, a crude model of dissipation has been introduced to test the stability of the 2D predictions.

14.
J Chem Phys ; 120(3): 1271-8, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-15268253

ABSTRACT

The competitive photodissociation of bromoacetyl chloride BrCH2COCl in the first 1A" state (S1) by 248 nm photons is investigated by nonadiabatic wave packet simulations. We show that the preferential breaking of the stronger C-Cl bond (alpha to the excited carbonyl) over the weaker C-Br bond (beta) could be explained by a diabatic trapping or nonadiabatic recrossing as previously proposed. Our energy resolved flux analysis agrees fairly well with the experimental branching ratio (C-Cl:C-Br=1.0:0.4). Even if this does not prove the mechanism, this at least prevents to discard it. A reduced dimensionality approach based on constrained Hamiltonian is used. The nonadiabatic dissociation is studied in the two C-O/C-X (X=Br, Cl) subspaces to emphasize the role of the C-O vibration upon [nO-->piCO*] excitation. The internal torsion and wagging dihedral angles are frozen at their Franck-Condon value, according to preliminary dynamical tests. The other inactive coordinates are optimized at the trans and Cs constrained geometry in the first excited state. Corresponding 2D cuts in the potential energy surfaces have been computed at the CASSCF level. The nonadiabatic kinetic couplings are highly peaked along an avoided crossing seam in both cases. A two-state diabatic model with a constant potential coupling is proposed in the two C-O/C-X subspaces. The inclusion of the C-O stretching in the active coordinates improves the value of the branching ratio over our previous 1D computation.

15.
J Chem Phys ; 121(2): 644-54, 2004 Jul 08.
Article in English | MEDLINE | ID: mdl-15260590

ABSTRACT

The 3D cumulative isomerization probability N(E) for the transfer of a light particle between two atoms is computed by one time-independent and two time-dependent versions of the transition state wave packet (TSWP) method. The time-independent method is based on the direct expansion of the microcanonical projection operator on Chebyshev polynomials. In the time-dependent TSWP methods, the propagations are carried out by the split operator scheme and the multiconfiguration time-dependent Hartree (MCTDH) algorithm. This is the very first implementation of the TSWP method in the Heidelberg MCTDH package [G. W. Worth, M. H. Beck, A. Jackle, and H.-D. Meyer, The MCDTH package, Version 8.2 (2000); H.-D Meyer, Version 8.3 (2002). See http://www.pci.uni-heidelberg.de/tc/usr/mctdh/]. The benchmark is the HCN-->CNH isomerization for zero total angular momentum. Particular insights are given into the tunneling region. In larger systems, the time-dependent version of TSWP making use of the MCTDH algorithm will permit to treat more and more modes quantum mechanically, for very accurate results. Therefore, it was important to calibrate the implementation. Besides, we also assess the efficiency of a reduced dimensionality approach by comparing the new exact 3D calculations of N(E) for the HCN-->CNH isomerization with results obtained via 1D or 2D active subspaces. This suggests that, it should be possible to take directly benefit of the present 3D approaches, adapted for triatomic Jacobi coordinates to compute N(E) for H-transfer in larger systems, via three active coordinates. The prerequisite is then the simplification of the reduced 3D kinetic energy operator with rigid constraint to take the form corresponding to a pseudo triatomic system in Jacobi coordinates with effective masses. This last step is checked in the methoxy radical and malonaldehyde. Finally, different ways to obtain reliable eigenvectors of the flux operator associated with a dividing surface are revisited.

SELECTION OF CITATIONS
SEARCH DETAIL
...