Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Insects ; 15(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535391

ABSTRACT

In managed boreal forests, both plantations and natural regeneration are used to re-establish a cohort of conifer trees following harvest or disturbance. Young trees in open plantations generally grow more rapidly than under forest canopies, but more rapid growth could be compromised by greater insect damage. We compared insect damage on white spruce (Picea glauca (Moench) Voss, Pinaceae) growing in plantations with naturally regenerated trees under mature forest canopies in boreal forests (Québec, Canada). We selected ten sites in the naturally regenerated forest and in small, multispecies plantations and sampled ten young trees of 2.5-3 m (per site) in late summer 2020 and again in early and late summer 2021. We compared overall rates of herbivory, galls (adelgids), damage by the spruce budworm (Choristoneura fumiferana, Clemens), and defoliation from sawflies. Overall, insect herbivory damage remained at similarly low levels in both habitats; an average of 9.3% of expanding shoots were damaged on forest trees and 7.7% in plantation trees. Spruce budworm damage increased from 2020 to 2021 and remained higher in under-canopy trees, but damage rates were negligible at this early stage of the outbreak (1.5% in forest vs. 0.78% of buds damaged on plantation trees). While damage due to galls was higher in plantations, the overall low level of damage likely does not pose a significant impact on the growth or mortality of young trees.

2.
Insects ; 12(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34357304

ABSTRACT

Changes during leaf ontogeny affect palatability to herbivores, such that many insects, including the eastern spruce budworm (Choristoneura fumiferana (Clem.)), are specialist feeders on growing conifer leaves and buds. Developmental constraints imply lower toughness in developing foliage, and optimal defense theory predicts higher investment in chemical defense in these vulnerable yet valuable developing leaves. We summarize the literature on the time course of defensive compounds in developing white spruce (Picea glauca (Moench) Voss) needles and report original research findings on the ontogeny of white spruce needle toughness. Our results show the predicted pattern of buds decreasing in toughness followed by leaves increasing in toughness during expansion, accompanied by opposite trends in water content. Toughness of mature foliage decreased slightly during the growing season, with no significant relationship with water content. Toughness of sun-grown leaves was slightly higher than that of shade-grown leaves. However, the literature review did not support the expected pattern of higher defensive compounds in expanding leaves than in mature leaves, suggesting that white spruce might instead exhibit a fast-growth low-defense strategy.

3.
Glob Chang Biol ; 27(14): 3358-3366, 2021 07.
Article in English | MEDLINE | ID: mdl-33872446

ABSTRACT

Phenological shifts, induced by global warming, can lead to mismatch between closely interacting species. The eastern spruce budworm, Choristoneura fumiferana, an important outbreaking insect defoliator in North America, mainly feeds on balsam fir, Abies balsamea, which has historically been well synchronized with the insect. But as climate change pushes the northern range limit of the budworm further north into the boreal forest, the highly valuable black spruce, Picea mariana, historically protected against the budworm by its late budburst phenology, is suffering increased defoliation during the current outbreak. We tested the hypothesis that rising temperatures can lead, not to a mismatch, but to an improved match between the budworm and black spruce through differential phenological advancement. For 3 years, eastern spruce budworm larvae were reared from instar 2 to pupae, on both black spruce and balsam fir, in a temperature free-air controlled enhancement experiment (T-FACE) consisting in 24 field plots, half of which were heated at +2°C from March to October. Our results show that every year, larval development was faster on heated trees and pupation was earlier than on unheated trees. Bud development was also accelerated in heated trees of both species. However, there was no difference in mass between pupae that developed at +2°C and controls at the end of the season. Finally, we found no difference either in development rate or pupal mass between larvae reared on black spruce and those reared on balsam fir. This suggests that under higher temperature regimes, eastern spruce budworm will be as successful on black spruce as on balsam fir, as black spruce budburst becomes better synchronized with the insect's emergence from diapause. This could lead to critical changes in outbreak dynamics and severity with important ecological state shifts at the landscape level.


Subject(s)
Abies , Moths , Picea , Animals , North America , Temperature
4.
PLoS One ; 15(8): e0237594, 2020.
Article in English | MEDLINE | ID: mdl-32817631

ABSTRACT

Traits of chemically-defended animals can change as an individual grows and matures, and both theoretical and empirical evidence favour a direction of change from crypsis to aposematism. This study examines the suite of traits involved in an unusual opposite shift from aposematism to crypsis in a neotropical toxic-plant-feeding Romaleid grasshopper, Chromacris psittacus (Gerstaecker, 1873). Field surveys, behavioural observations and a rearing experiment compare host plant choice, aggregation, locomotion and thermoregulation between life history stages. Results showed that both nymphs and adults fed exclusively on a narrow range of Solanaceae plants, suggesting that the shift in defensive syndrome is not due to a change in chemical defense. Instead, nymphal aposematism appears linked to aggregation in response to plant-based selection pressures. Slow nymphal development suggests a cost to feeding on toxic plant compounds, and grouping could mitigate this cost. Grouping also increases conspicuousness, and hence can favour warning colourating in chemically-defended insects. The role of diet breadth in aposematism is poorly understood, and these results suggest how constraints imposed by feeding on toxic plants can generate bottom-up selection pressures shaping the adaptive suites of traits of chemically-defended animals.


Subject(s)
Adaptation, Physiological , Biological Evolution , Biological Mimicry , Feeding Behavior , Grasshoppers/physiology , Solanaceae/growth & development , Animals , Behavior, Animal , Models, Biological , Predatory Behavior
5.
PeerJ ; 8: e8782, 2020.
Article in English | MEDLINE | ID: mdl-32206453

ABSTRACT

The recent introduction in a tropical agricultural environment of a weedy open-habitat plant (Solanum myriacanthum) and subsequent host range expansion of a common forest-edge butterfly (Mechanitis menapis) onto that plant provides an opportunity to examine reconfiguration of tritrophic networks in human-impacted landscapes. The objectives of this study were (1) determine if the caterpillars on the exotic host are more or less limited by plant defenses (bottom-up forces) and if they experience enemy release (decrease of top-down pressure) and (2) define how anthropic open pasture habitat influences the herbivore's tritrophic niche. Field and laboratory monitoring of larval survival and performance on a native (Solanum acerifolium) host plant and the exotic (S. myriacanthum) host plant were conducted in the Mindo Valley, Ecuador. Plant physical defenses were also measured. Results showed that larval mortality was mostly top-down on S. acerifolium, linked to parasitism, but mostly bottom-up on S. myriacanthum, possibly linked to observed increased plant defenses. Thus, in the absence of co-evolved relationships, herbivores on the exotic host experienced little top-down regulation, but stronger bottom-up pressures from plant defenses. These findings provide a rare empirical example of enemy-free space as a mechanism underlying host-range expansion. S. myriacanthum was less colonized in open pastures than in semi-shaded habitats (forest edges, thickets): fewer eggs were found, suggesting limited dispersal of adult butterflies into the harsh open environments, and the survival rate of first instar larvae was lower than on semi-shaded plants, likely linked to the stronger defenses of sun-grown leaves. These findings show how environmental conditions modulate the rewiring of trophic networks in heavily impacted landscapes, and limit a biocontrol by a native herbivore on an invasive plant in open habitats.

6.
Rev. biol. trop ; 67(6)dic. 2019.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1507597

ABSTRACT

Las mariposas de la tribu Ithomiini son uno de los modelos biológicos más estudiados en años recientes en trabajos de biogeografía, taxonomía y evolución. Sin embargo, aun cuando la biología y distribución de sus especies es mejor conocida que la de otros grupos de mariposas, existen aspectos de la historia natural poco estudiados que permitirían un mejor entendimiento del comportamiento de sus poblaciones y las interacciones con su ambiente. En este trabajo, se estudió la historia natural de la mariposa, Mechanitis menapis mantineus Hewitson (Nymphalidae: Ithomiini) y sus enemigos naturales en el oeste de Ecuador. Para ello, se realizó la identificación de las plantas hospederas, se estudió el ciclo de vida y los factores de mortalidad de los estados inmaduros. Adicionalmente, se identificaron los parasitoides asociados a la especie en la zona de estudio. Se identificaron tres plantas hospederas, las cuales son nuevos registros para la especie en la región. Asimismo, se describió la morfología de los estados inmaduros y su tiempo de desarrollo. Finalmente, se identificaron los principales enemigos naturales y se describieron aspectos de la historia natural y comportamiento de Hyposoter sp. (Ichneumonidae: Campopleginae), principal parasitoide de larvas. Los resultados de este trabajo, proporcionan información esencial para la revisión taxonómica del género Mechanitis F. y para continuar el estudio de la interacción de esta especie con sus plantas hospederas y enemigos naturales.


Life cycle and natural enemies of Mechanitis menapis (Lepidoptera: Ithomiini). The butterflies of the Ithomiini tribe are one of the most-studied biological models of recent years in terms of biogeography, taxonomy, and evolution. However, even though their biology and distribution is better known than many other groups of butterflies, there are unknown aspects of their natural history that would improve our understanding of their behavior, population dynamics, and interactions with their environment. In this work, we studied the natural history of the butterfly Mechanitis menapis mantineus Hewitson (Nymphalidae: Ithomiini), and its natural enemies, in Western Ecuador. We identified three host plants, which are new records for the species in this region. We documented the life cycle and described the morphology of the immature stages, their development time, and studied the factors associated with mortality of these immature stages. Additionally, we identified the parasitoids associated with the species in the study area. In particular, we documented aspects of the natural history and behavior of Hyposoter sp. (Ichneumonidae: Campopleginae), the main parasitoid of the larvae. The results of this work provide essential information for the taxonomic revision of the genus Mechanitis F. as well as the continued study of the interactions between the butterfly, its host plants, and natural enemies.

7.
PLoS One ; 14(5): e0208288, 2019.
Article in English | MEDLINE | ID: mdl-31095557

ABSTRACT

This study examines the post-ingestive fate of two host-plant derived small-molecule phenolics (the acetophenones piceol and pungenol) that have previously been shown to be toxic to the outbreaking forest pest, spruce budworm (Choristoneura fumiferana). We test first whether these compounds are transformed during passage through the midgut, and second whether the budworm upregulates activity of the detoxification enzyme glutathione-s-transferase (GST) in response to feeding on these compounds. Insects were reared on either foliage or artificial diet to the fourth instar, when they were transferred individually to one of two treatment diets, either control or phenolic-laced, for approximately 10 days, after which midguts were dissected out and used for Bradford soluble protein and GST enzyme activity analysis. Frass was collected and subjected to HPLC-DAD-MS. HPLC showed that the acetophenones do not autoxidize under midgut pH conditions, but that glucose- and glutathione- conjugates are present in the frass of insects fed the phenolic-laced diet. GST enzyme activity increases in insects fed the phenolic-laced diet, in both neutral pH and alkaline assays. These data show that the spruce budwom exhibits counter-adaptations to plant phenolics similar to those seen in angiosperm feeders, upregulating an important detoxifying enzyme (GST) and partially conjugating these acetophenones prior to elimination, but that these counter-measures are not totally effective at mitigating toxic effects of the ingested compounds in the context of our artifical-diet based laboratory experiment.


Subject(s)
Phenols/metabolism , Picea/metabolism , Animals , Chromatography, High Pressure Liquid , Digestive System/metabolism , Glutathione Transferase/metabolism , Hydrogen-Ion Concentration , Insecta , Moths
8.
Oecologia ; 184(4): 847-857, 2017 08.
Article in English | MEDLINE | ID: mdl-28756489

ABSTRACT

Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.


Subject(s)
Abies , Moths , Picea , Animals , Disease Outbreaks , Larva/growth & development , Moths/growth & development , Picea/growth & development , Pupa/growth & development , Trees
9.
Insect Sci ; 24(1): 73-80, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26463122

ABSTRACT

Monoterpenes, source of the distinctive odor of conifers, are generally considered plant defensive compounds. However, they are also known to act as long-range insect attractants, as they are volatile and permeate forest airspaces. Moreover, they are lipid soluble and can be absorbed into plant epicuticular waxes. We test their role in short-range host plant choice by both adult females and larvae of a folivorous forest pest (Choristoneura fumiferana). We conducted laboratory assays testing the responses of Eastern spruce budworm to an artificial monoterpene mix (α-pinene, ß-pinene, limonene, myrcene) and to white spruce (Picea glauca) epicuticular waxes in closed arenas. Ovipositing females preferred filter paper discs treated with P. glauca waxes to controls, and preferred the waxes + monoterpenes treatment to waxes alone. However, females showed no preference between the monoterpene-treated disc and the control when presented without waxes. Feeding larvae prefered wax discs to control discs. They also consumed discs treated with realistic monoterpene concentrations and wax preferentially over wax-only discs, but showed no preference between extremely high monoterpene concentrations and wax-only controls. In an insect-free assay, P. glauca epicuticular wax decreased monoterpene volatilization. These results suggest that P. glauca waxes and realistic concentrations of monoterpenes are stimulatory to both egg-laying females and feeding larvae, and that their effects are synergistic.


Subject(s)
Monoterpenes/metabolism , Moths/physiology , Picea/metabolism , Waxes/metabolism , Animals , Female , Larva/drug effects , Larva/physiology , Monoterpenes/chemistry , Monoterpenes/pharmacology , Moths/drug effects , Oviposition/drug effects , Oviposition/physiology , Picea/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Waxes/chemistry , Waxes/pharmacology
10.
Front Genet ; 5: 334, 2014.
Article in English | MEDLINE | ID: mdl-25309583

ABSTRACT

The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 5000 m asl (prepuna, puna and Andean steppe habitats) as well as in high and low-altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life history strategies and relationships with host plants.

11.
J Insect Physiol ; 65: 9-26, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24768842

ABSTRACT

Desert Locusts can change reversibly between solitarious and gregarious phases, which differ considerably in behaviour, morphology and physiology. The two phases show many behavioural differences including both overall levels of activity and the degree to which they are attracted or repulsed by conspecifics. Solitarious locusts perform infrequent bouts of locomotion characterised by a slow walking pace, groom infrequently and actively avoid other locusts. Gregarious locusts are highly active with a rapid walking pace, groom frequently and are attracted to conspecifics forming cohesive migratory bands as nymphs and/or flying swarms as adults. The sole factor driving the onset of gregarization is the presence of conspecifics. In several previous studies concerned with the mechanism underlying this transformation we have used an aggregate measure of behavioural phase state, Pgreg, derived from logistic regression analysis, which combines and weights several behavioural variables to characterise solitarious and gregarious behaviour. Using this approach we have analysed the time course of behavioural change, the stimuli that induce gregarization and the key role of serotonin in mediating the transformation. Following a recent critique that suggested that using Pgreg may confound changes in general activity with genuine gregarization we have performed a meta-analysis examining the time course of change in the individual behaviours that we use to generate Pgreg. We show that the forced crowding of solitarious locusts, tactile stimulation of the hind femora, and the short-term application of serotonin each induce concerted changes in not only locomotion-related variables but also grooming frequency and attraction to other locusts towards those characteristic of long-term gregarious locusts. This extensive meta-analysis supports and extends our previous conclusions that solitarious locusts undergo a rapid behavioural gregarization upon receiving appropriate stimulation for a few hours that is mediated by serotonin, at the end of which their behaviour is largely indistinguishable from locusts that have been in the gregarious phase their entire lives.


Subject(s)
Behavior, Animal/physiology , Grasshoppers/physiology , Serotonin/metabolism , Social Behavior , Animals , Crowding , Grooming/physiology , Locomotion/physiology , Touch/physiology
12.
Front Physiol ; 4: 54, 2013.
Article in English | MEDLINE | ID: mdl-23526800

ABSTRACT

Collective behavior in the forest tent caterpillar (Malacosoma disstria) meets the thermal constraints of being an early spring folivore, but introduces other constraints in food choice. These are minimized by state-dependent, inter-individual, and ontogenetic variations in responses to social cues. Forest tent caterpillars use pheromone trails and tactile communication among colony members to stay together during foraging. At the group level, these rules lead to cohesive synchronized collective nomadic foraging, in which the colony travels en masse between feeding and resting sites. This paper proposes that synchronized collective locomotion prevents individuals from becoming separated from the colony and hence permits them to reap the advantages of group-living, notably collective basking to increase their body temperature above ambient and collective defense against natural enemies. However, this cohesive behavior also implies conservative foraging, and colonies can become trapped on poor food sources. High fidelity to pheromone trails leads to strong amplification of an initial choice, such that colonies seldom abandon the first food source contacted, even if a better one is nearby. The risk of this trapping is modulated both by consistent inter-individual variations in exploratory behavior and by inner state. Colonies consisting of active-phenotype or protein-deprived individuals that explore more-off trails exhibit greater collective flexibility in foraging. An ontogenetic shift toward more independent movement occurs as caterpillars grow. This leads to colony break-up as the season advances. Selection pressures facing older caterpillars favor solitary living more than in the earlier instars. Caterpillars respond to this predictably changing environment by altering their behavioral rules as they grow.

13.
J Insect Physiol ; 58(1): 67-74, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22008291

ABSTRACT

In this study we investigated the presence and possible genetic basis of polymorphic melanism in the forest tent caterpillar (Malacosoma disstria) moth. Adult moths were classified into pattern-based phenotypes and wing darkness was measured to quantify the degree of melanization. We found that two distinct phenotypes, melanic and simple, are present in these moths. Although the full melanic phenotype is sex-limited to males, it is partially expressed in females. We also provide support for the theory that the melanic allele is autosomal and dominant. The effects of larval diet quality on the survival, development and wing melanization of each phenotype were studied by rearing larvae on the foliage of either a primary or secondary host. Diet quality did not differentially affect the two phenotypes; however, melanic males were found to be smaller than simple males regardless of larval diet. Such inherent developmental differences between the two phenotypes could have important consequences for the frequencies of the two morphs.


Subject(s)
Diet , Melanins/metabolism , Moths/physiology , Pigmentation/genetics , Animals , Female , Genes, Dominant , Larva/physiology , Male , Phenotype , Polymorphism, Genetic , Wings, Animal/metabolism
14.
Naturwissenschaften ; 98(5): 425-34, 2011 May.
Article in English | MEDLINE | ID: mdl-21475942

ABSTRACT

Gregariousness in animals is widely accepted as a behavioral adaptation for protection from predation. However, predation risk and the effectiveness of a prey's defense can be a function of several other factors, including predator species and prey size or age. The objective of this study was to determine if the gregarious habit of Malacosoma disstria caterpillars is advantageous against invertebrate natural enemies, and whether it is through dilution or cooperative defenses. We also examined the effects of larval growth and group size on the rate and success of attacks. Caterpillars of M. disstria responded with predator-specific behaviors, which led to increased survival. Evasive behaviors were used against stinkbugs, while thrashing by fourth instar caterpillars and holding on to the silk mat by second instar caterpillars was most efficient against spider attacks. Collective head flicking and biting by groups of both second and fourth instar caterpillars were observed when attacked by parasitoids. Increased larval size decreased the average number of attacks by spiders but increased the number of attacks by both stinkbugs and parasitoids. However, increased body size decreased the success rate of attacks by all three natural enemies and increased handling time for both predators. Larger group sizes did not influence the number of attacks from predators but increased the number of attacks and the number of successful attacks from parasitoids. In all cases, individual risk was lower in larger groups. Caterpillars showed collective defenses against parasitoids but not against the walking predators. These results show that caterpillars use different tactics against different natural enemies. Overall, these tactics are both more diverse and more effective in fourth instar than in second instar caterpillars, confirming that growth reduces predation risk. We also show that grouping benefits caterpillars through dilution of risk, and, in the case of parasitoids, through group defenses. The decreased tendency to aggregate in the last larval instar may therefore be linked to decreasing predation risk.


Subject(s)
Arthropods/physiology , Behavior, Animal/physiology , Moths/physiology , Predatory Behavior/physiology , Adaptation, Physiological , Animals , Body Size , Larva , Moths/growth & development , Population Density , Social Behavior
15.
J Exp Biol ; 212(Pt 12): 1794-800, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19482996

ABSTRACT

Fitness depends not only on resource uptake but also on the allocation of these resources to various life history functions. This study explores the life-history consequences of larval diet in terms not only of larval performance but also of adult body composition and reproductive traits in the forest tent caterpillar (Malacosoma disstria Hübner). Caterpillars were reared on their preferred tree host, trembling aspen (Populus tremuloides), or on one of three artificial foods: high protein:low carbohydrate, equal protein-to-carbohydrate ratio or low protein:high carbohydrate. Survivorship, larval development rate and adult body size were lowest on the carbohydrate-biased diet and similar on the protein-biased and equal-ratio diets. Fecundity increased with body size but did not otherwise differ between diets. Moths reared on the carbohydrate-biased diet allocated a lower proportion of their mass to the ovaries and more to somatic growth whereas those on equal-ratio and protein-biased diets allocated more to reproductive tissue and less to somatic tissue. These differences in allocation to reproduction arose from differences in the size of eggs, an index of offspring quality. No differences were found in lipid and protein content of female ovaries, accessory glands or somatic tissue, or of the whole body of male moths. The findings show that physiological processes regulate the composition of the different components of the adult body. Diet effects occur as differences in overall body size and in relative allocation to these components. Although lepidopterans can, to a large extent, compensate post-ingestively for nutritionally deficient diets, investment in reproduction vs somatic growth depends on the nutrients available.


Subject(s)
Moths/metabolism , Animals , Body Composition , Feeding Behavior , Female , Fertility , Larva/growth & development , Larva/metabolism , Larva/physiology , Lipid Metabolism , Male , Moths/growth & development , Moths/physiology , Nitrogen/metabolism , Populus
16.
J Insect Physiol ; 54(1): 286-96, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17997409

ABSTRACT

Caterpillars are faced with nutritional challenges when feeding on plants. In addition to harmful secondary metabolites and protein- and water-limitations, tissues may be carbohydrate-rich which may attenuate optimal caterpillar performance. Therefore, caterpillars have multiple strategies to cope with surplus carbohydrates. In this study, we raise the possibility of a pre-ingestive mechanism to metabolically deal with excess dietary sugars. Many Noctuid caterpillars secrete the labial salivary enzyme glucose oxidase (GOX), which oxidizes glucose to hydrogen peroxide and gluconate, a nutritionally unavailable carbohydrate to the insect. Beet armyworm, Spodoptera exigua, larvae were restricted to diets varying in protein to digestible carbohydrate (P:C) ratio (42p:21c; 33p:30c; 21p:42c) and total nutrient concentration (42% and 63%). High mortality and longer developmental time were observed when caterpillars were reared on the C-biased, P-poor diet (21p:42c). As the carbohydrate content of the diet increased, caterpillars egested excess glucose and a diet-dependent difference in assimilated carbohydrates and pupal biomass was not observed, even though caterpillars restricted to the C-biased diet (21p:42c) accumulated greater pupal lipid reserves. Larval labial salivary GOX activity was also diet-dependent and gluconate, the product of GOX activity, was detected in the frass. Unexpectedly, GOX activity was strongly and positively correlated with dietary protein content.


Subject(s)
Animal Nutritional Physiological Phenomena , Dietary Carbohydrates/metabolism , Glucose Oxidase/metabolism , Moths/enzymology , Salivary Glands/enzymology , Analysis of Variance , Animals , Dietary Proteins/metabolism , Larva/enzymology , Larva/growth & development
17.
J Insect Physiol ; 53(11): 1160-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17689556

ABSTRACT

This study examines whether the ratio of protein to carbohydrate affects the timing of meals and the propensity to explore of forest tent caterpillars (Malacosoma disstria). The behavior of fourth instar caterpillars was observed on three semi-defined artificial diets varying in protein (p)-carbohydrate (c) ratio. These diets were (a) p14:c28, (b) p28:c14, and (c) p35:c7. The probability of initiating feeding at first contact with the food and the duration of the first feeding event did not vary across diets, suggesting not much difference in phagostimulatory power. There was also no difference in the total time spent eating, at rest and in motion between diets. However, the timing and duration of meals varied significantly; more short meals were observed on the carbohydrate-biased diet. The duration of pauses between meals also increased with food protein content. Furthermore, caterpillars on the carbohydrate-biased diet were more likely to leave the trail leading to the known food source and to discover a second food source, suggesting that protein deprivation promotes exploration. These findings shed insight into the physiological responses to protein and carbohydrate ingestion and demonstrate how post-ingestive effects can favor consumption of foods containing protein without invoking an explicit mechanism of independent nutrient regulation, but simply by influencing the pattern of feeding and the propensity to explore.


Subject(s)
Dietary Carbohydrates , Dietary Proteins , Exploratory Behavior/physiology , Feeding Behavior/physiology , Moths/physiology , Animals , Food , Time Factors
18.
Proc Biol Sci ; 273(1593): 1517-22, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16777746

ABSTRACT

Synchronized behaviour is common in animal groups. In ant colonies, synchronization occurs because active ants stimulate their neighbours to activity. We use oscillator theory to explain how stimulation from active neighbours synchronizes activity in groups of solitarious locusts via entrainment of internal physiological rhythms. We also show that the spatial distribution of food resources controls coupling between individual locusts and the emergence of synchronized activity. In locusts (Schistocerca gregaria), individual schedules of activity and quiescence arise from an irregular physiological oscillation in feeding excitation (i.e. hunger). We show that contact with an active neighbour increases the probability that a locust becomes active. This entrained activity decreases the time until the locust feeds, shifting the phase of its hunger oscillation. The locusts' internal physiological rhythms are thus brought into alignment and their activity becomes synchronized. When food resources are clumped, contact with active locusts increases, and this increase in the strength of coupling between individuals leads to greater synchronization of behaviour. Activity synchronization might have functional significance in inhibiting swarming when resources are dispersed and accelerating it in more favourable clumped environments.


Subject(s)
Environment , Feeding Behavior , Grasshoppers/physiology , Periodicity , Animal Communication , Animals , Models, Biological
19.
J Exp Biol ; 209(Pt 7): 1301-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16547301

ABSTRACT

Nutritional regulation is a powerful mechanism used by generalist feeders to obtain the balance of nutrients they require from nutritionally diverse, perhaps unbalanced, foods. We examined nutritional regulation in a species with a narrow individual diet breadth: the forest tent caterpillar, Malacosoma disstria. Fourth instar caterpillars were provided with artificial foods consisting of different ratios of protein to digestible carbohydrate in no-choice, choice and compensatory feeding experiments. In the no-choice test, caterpillars were confined to a single food source of varying protein/carbohydrate ratio for the duration of the fourth larval stadium. Caterpillars performed best on equal-ratio and slightly protein-biased diets. Significant reductions in performance were only observed on extremely protein- or carbohydrate-biased diets. Daily consumption of the three acceptable intermediate diets was consistent with volumetric regulation, but the timing of the moult to the next instar appeared linked instead to protein intake. In the choice test, caterpillars were provided with two complementary foods, one biased toward protein and the other toward carbohydrate, for the duration of the stadium. The caterpillars fed randomly from the two food sources presented to them, except for the extremely protein-biased diet (P:C ratio of 35:7), which they avoided. The compensatory feeding experiment tested whether forest tent caterpillars deprived of either protein or digestible carbohydrate would select a food containing the deficient nutrient. Insects were conditioned on either protein-only, carbohydrate-only, protein-and-carbohydrate or no-nutrient foods, then offered a choice between protein-only and carbohydrate-only foods. Unlike previously studied generalist feeders, our caterpillars did not compensate for protein deficiency and showed only very weak evidence of compensation for carbohydrate deficiency. Forest tent caterpillars are colonial trail-laying forest folivores that are generally confined to a single host plant and hence do not experience much diversity in food nutrient ratios. We show that forest tent caterpillars do not independently regulate protein and carbohydrate intake. These findings are consistent with predictions that nutritional regulation abilities should be less important in animals with narrower diet breadths.


Subject(s)
Animal Nutritional Physiological Phenomena , Feeding Behavior/physiology , Larva/physiology , Lepidoptera/physiology , Animals , Diet , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Food Preferences , Larva/growth & development , Lepidoptera/growth & development , Trees
20.
J Exp Biol ; 206(Pt 22): 3991-4002, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14555739

ABSTRACT

Desert locusts show an extreme form of phenotypic plasticity, changing between a cryptic solitarious phase and a swarming gregarious phase that differ in many aspects of behaviour, physiology and appearance. Solitarious locusts show rapid behavioural phase change in response to tactile stimulation directed to the hind femora. Repeatedly touching as little as one quarter of the anterior (outer) surface area of a hind femur produced full behavioural gregarization within 4 h. Solitarious locusts have approximately 30% more mechanosensory trichoid sensilla on the hind femora than do gregarious locusts but have similar or fewer numbers of sensilla elsewhere on the legs. Tactile stimulation of a hind femur in solitarious locusts that had been restrained so that they could not move their legs failed to induce any behavioural gregarization. Patterned electrical stimulation of metathoracic nerve 5, which innervates the hind leg, however, produced full gregarization in restrained locusts. Our data show for the first time that the gregarizing signal combines both exteroceptive and proprioceptive components, which travel in both nerves 5B1 and 5B2, and provides us with a powerful experimental method with which to elicit and study neuronal plasticity in this system. Acetic acid odour, a strong chemosensory stimulus that activates the same local processing pathways as exteroceptive stimuli, failed to elicit behavioural gregarization, suggesting an early segregation in the central nervous system of the mechanosensory signals that leads to gregarization.


Subject(s)
Grasshoppers/physiology , Mechanoreceptors/physiology , Neuronal Plasticity/physiology , Social Behavior , Acetic Acid , Animals , Desert Climate , Electric Stimulation , Extremities/innervation , Extremities/physiology , Muscle, Skeletal/innervation , Odorants , Stimulation, Chemical , Time Factors , Touch/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...