Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 11(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34357353

ABSTRACT

Lipoprotein(a) (Lp(a)) is one of the most important risk factors for the development of calcific aortic valve stenosis (CAVS). However, the mechanisms through which Lp(a) causes CAVS are currently unknown. Our objectives were to characterize the Lp(a) proteome and to identify proteins that may be differentially associated with Lp(a) in patients with versus without CAVS. Our second objective was to identify genes that may be differentially regulated by exposure to high versus low Lp(a) levels in explanted aortic valves from patients with CAVS. We isolated Lp(a) from the blood of 21 patients with CAVS and 22 volunteers and performed untargeted label-free analysis of the Lp(a) proteome. We also investigated the transcriptomic signature of calcified aortic valves from patients who underwent aortic valve replacement with high versus low Lp(a) levels (n = 118). Proteins involved in the protein activation cascade, platelet degranulation, leukocyte migration, and response to wounding may be associated with Lp(a) depending on CAVS status. The transcriptomic analysis identified genes involved in cardiac aging, chondrocyte development, and inflammation as potentially influenced by Lp(a). Our multi-omic analyses identified biological pathways through which Lp(a) may cause CAVS, as well as key molecular events that could be triggered by Lp(a) in CAVS development.

2.
CJC Open ; 3(4): 450-459, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34027348

ABSTRACT

BACKGROUND: Lipoprotein(a) (Lp[a]), which consists of a low-density lipoprotein (LDL) bound to apolipoprotein(a), is one of the strongest genetic risk factors for atherosclerotic cardiovascular diseases. Few studies have performed hypothesis-free direct comparisons of the Lp(a) and the LDL proteomes. Our objectives were to compare the Lp(a) and the LDL proteomic profiles and to evaluate the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile. METHODS: We performed a label-free analysis of the Lp(a) and LDL proteomic profiles of healthy volunteers in a discovery (n = 6) and a replication (n = 9) phase. We performed inverse variance weighted Mendelian randomization to document the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile of participants of the INTERVAL study. RESULTS: We identified 15 proteins that were more abundant on Lp(a) compared with LDL (serping1, pi16, itih1, itih2, itih3, pon1, podxl, cd44, cp, ptprg, vtn, pcsk9, igfals, vcam1, and ttr). We found no proteins that were more abundant on LDL compared with Lp(a). After correction for multiple testing, lifelong exposure to elevated LDL cholesterol levels was associated with the variation of 18 plasma proteins whereas Lp(a) did not appear to influence the plasma proteome. CONCLUSIONS: Results of this study highlight marked differences in the proteome of Lp(a) and LDL as well as in the effect of lifelong exposure to elevated LDL cholesterol or Lp(a) on the plasma proteomic profile.


CONTEXTE: La lipoprotéine(a) (Lp[a]), qui est constituée d'une lipoprotéine de basse densité (LDL) liée à une apolipoprotéine(a), est l'un des plus importants facteurs de risque génétiques de survenue d'une maladie cardiovasculaire athéroscléreuse. Peu d'études comparatives directes sans hypothèse ont porté sur le protéome de la Lp(a) et celui des LDL. Nos objectifs étaient de comparer les profils protéomiques de la Lp(a) et des LDL et d'évaluer l'effet d'une exposition à vie à un taux élevé de Lp(a) ou de cholestérol LDL sur le profil protéomique plasmatique. MÉTHODOLOGIE: Nous avons réalisé une analyse sans marquage des profils protéomiques de la Lp(a) et des LDL chez des volontaires en bonne santé dans le cadre d'une phase de découverte (n = 6) et d'une phase de réplication (n = 9). Pour rendre compte de l'effet d'une exposition à vie à un taux élevé de Lp(a) ou de cholestérol des LDL sur le profil protéomique plasmatique des participants de l'étude INTERVAL, nous avons utilisé une analyse de randomisation Mendélienne avec pondération par l'inverse de la variance. RÉSULTATS: Nous avons relevé 15 protéines associées en plus grande abondance à la Lp(a) qu'aux LDL (serping1, pi16, itih1, itih2, itih3, pon1, podxl, cd44, cp, ptprg, vtn, pcsk9, igfals, vcam1 et ttr). Nous n'avons noté aucune protéine associée en plus grande abondance aux LDL qu'à la Lp(a). Après correction pour tenir compte de la multiplicité des tests, l'exposition à vie à un taux élevé de cholestérol LDL a été associée à la variation de 18 protéines plasmatiques, tandis que le taux de Lp(a) ne semblait pas influencer le protéome plasmatique. CONCLUSIONS: Les résultats de notre étude font ressortir les différences marquées entre le protéome de la Lp(a) et celui des LDL, ainsi qu'entre l'effet sur le profil protéomique plasmatique de l'exposition à vie à un taux élevé de cholestérol LDL et celui de l'exposition à vie à un taux élevé de Lp(a).

3.
JACC Basic Transl Sci ; 5(9): 888-897, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33015412

ABSTRACT

Our objectives were to determine whether autotaxin (ATX) is transported by lipoprotein(a) [Lp(a)] in human plasma and if could be used as a biomarker of calcific aortic valve stenosis (CAVS). We first found that ATX activity was higher in Lp(a) compared to low-density lipoprotein fractions in isolated fractions of 10 healthy participants. We developed a specific assay to measure ATX-Lp(a) in 88 patients with CAVS and 144 controls without CAVS. In a multivariable model corrected for CAVS risk factors, ATX-Lp(a) was associated with CAVS (p = 0.003). We concluded that ATX is preferentially transported by Lp(a) and might represent a novel biomarker for CAVS.

4.
Obes Surg ; 30(10): 3714-3720, 2020 10.
Article in English | MEDLINE | ID: mdl-32666413

ABSTRACT

BACKGROUND: Elevated lipoprotein(a) (Lp(a)) level is an independent risk factor for cardiovascular diseases. Lifestyle intervention studies targeting weight loss revealed little to no significant changes in Lp(a) levels. The impact of interventions that induce substantial weight loss, such as bariatric surgery, on Lp(a) levels is currently unclear. OBJECTIVE: To determine the acute and long-term impact of bariatric surgery on Lp(a) levels in patients with severe obesity. METHODS: Sixty-nine patients with severe obesity underwent biliopancreatic diversion with duodenal switch (BPD-DS) surgery. The lipid profile was evaluated and Lp(a) levels were measured before surgery and at 6 and 12 months after BPD-DS surgery. RESULTS: Median Lp(a) levels at baseline were 11.1 (4.1-41.6) nmol/L. Six months and 12 months after the BDP-DS surgery, we observed an improvement of lipid profile. At 6 months, we observed a 13% decrease in Lp(a) levels (9.7 (2.9-25.6) nmol/L, p < 0.0001) but this decrease was not sustained at 12 months (11.1 (3.9-32.8) nmol/L, p = 0.8). When the patients were separated into tertiles according to Lp(a) levels at baseline, we observed that the Lp(a) reduction at 12 months after BPD-DS surgery remained significant but modest in patients of the top Lp(a) tertile. CONCLUSION: Our results suggest that BPD-DS surgery modestly reduces Lp(a) levels in the short term (6 months) in patients with severe obesity but this improvement is sustained over time only in patients with higher Lp(a) levels.


Subject(s)
Bariatric Surgery , Biliopancreatic Diversion , Obesity, Morbid , Duodenum , Humans , Lipoprotein(a) , Obesity, Morbid/surgery , Plasma
5.
JAMA Cardiol ; 4(7): 620-627, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31141105

ABSTRACT

Importance: Genetic variants at the LPA locus are associated with both calcific aortic valve stenosis (CAVS) and coronary artery disease (CAD). Whether these variants are associated with CAVS in patients with CAD vs those without CAD is unknown. Objective: To study the associations of LPA variants with CAVS in a cohort of patients undergoing heart surgery and LPA with CAVS in patients with CAD vs those without CAD and to determine whether first-degree relatives of patients with CAVS and high lipoprotein(a) (Lp[a]) levels showed evidence of aortic valve microcalcification. Design, Setting, and Participants: This genetic association study included patients undergoing cardiac surgery from the Genome-Wide Association Study on Calcific Aortic Valve Stenosis in Quebec (QUEBEC-CAVS) study and patients with CAD, patients without CAD, and control participants from 6 genetic association studies: the UK Biobank, the European Prospective Investigation of Cancer (EPIC)-Norfolk, and Genetic Epidemiology Research on Aging (GERA) studies and 3 French cohorts. In addition, a family study included first-degree relatives of patients with CAVS. Data were collected from January 1993 to September 2018, and analysis was completed from September 2017 to September 2018. Exposures: Case-control studies. Main Outcomes and Measures: Presence of CAVS according to a weighted genetic risk score based on 3 common Lp(a)-raising variants and aortic valve microcalcification, defined as the mean tissue to background ratio of 1.25 or more, measured by fluorine 18-labeled sodium fluoride positron emission tomography/computed tomography. Results: This study included 1009 individuals undergoing cardiac surgery and 1017 control participants in the QUEBEC-CAVS cohort; 3258 individuals with CAVS and CAD, 41 100 controls with CAD, 2069 individuals with CAVS without CAD, and 380 075 control participants without CAD in the UK Biobank, EPIC-Norfolk, and GERA studies and 3 French cohorts combined; and 33 first-degree relatives of 17 patients with CAVS and high Lp(a) levels (≥60 mg/dL) and 23 control participants with normal Lp(a) levels (<60 mg/dL). In the QUEBEC-CAVS study, each SD increase of the genetic risk score was associated with a higher risk of CAVS (odds ratio [OR], 1.35 [95% CI, 1.10-1.66]; P = .003). Each SD increase of the genetic risk score was associated with a higher risk of CAVS in patients with CAD (OR, 1.30 [95% CI, 1.20-1.42]; P < .001) and without CAD (OR, 1.33 [95% CI, 1.14-1.55]; P < .001). The percentage of individuals with a tissue to background ratio of 1.25 or more or CAVS was higher in first-degree relatives of patients with CAVS and high Lp(a) (16 of 33 [49%]) than control participants (3 of 23 [13%]; P = .006). Conclusions and Relevance: In this study, a genetically elevated Lp(a) level was associated with CAVS independently of the presence of CAD. These findings support further research on the potential usefulness of Lp(a) cascade screening in CAVS.


Subject(s)
Aortic Valve Stenosis/genetics , Aortic Valve/pathology , Calcinosis/genetics , Lipoprotein(a)/genetics , Aged , Clinical Trials as Topic , Coronary Artery Disease/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Pedigree , Prospective Studies , Risk Factors
6.
CJC Open ; 1(3): 131-140, 2019 May.
Article in English | MEDLINE | ID: mdl-32159096

ABSTRACT

BACKGROUND: Lipoprotein(a) (Lp[a]) is the preferential lipoprotein carrier of oxidized phospholipids (OxPLs) and a well-established genetic risk factor for calcific aortic valve stenosis (CAVS). Whether Lp(a) predicts aortic valve microcalcification in individuals without CAVS is unknown. Our objective was to estimate the prevalence of elevated Lp(a) and OxPL levels in patients with CAVS and to determine if individuals with elevated Lp(a) but without CAVS have higher aortic valve microcalcification. METHODS: We recruited 214 patients with CAVS from Montreal and 174 patients with CAVS and 108 controls from Québec City, Canada. In a second group of individuals with high (≥75 nmol/L, n = 27) or low (<75 nmol/L, n = 28) Lp(a) levels, 18F-sodium fluoride positron emission tomography/computed tomography was performed to determine the difference in mean tissue-to-background ratio (TBR) of the aortic valve. RESULTS: Patients with CAVS had 62.0% higher Lp(a) (median = 28.7, interquartile range [8.2-116.6] vs 10.9 [3.6-28.8] nmol/L, P < 0.0001), 50% higher OxPL-apolipoprotein-B (2.2 [1.3-6.0] vs 1.1 [0.7-2.6] nmol/L, P < 0.0001), and 69.9% higher OxPL-apolipoprotein(a) (7.3 [1.8-28.4] vs 2.2 [0.8-8.4] nmol/L, P < 0.0001) levels compared with individuals without CAVS (all P < 0.0001). Individuals without CAVS but elevated Lp(a) had 40% higher mean TBR compared with individuals with low Lp(a) levels (mean TBR = 1.25 ± 0.23 vs 1.15 ± 0.11, P = 0.02). CONCLUSIONS: Elevated Lp(a) and OxPL levels are associated with prevalent CAVS in patients studied in an echocardiography laboratory setting. In individuals with elevated Lp(a), evidence of aortic valve microcalcification by 18F-sodium fluoride positron emission tomography/computed tomography is present before the development of clinically manifested CAVS.


CONTEXTE: La lipoprotéine(a) (Lp[a]), la principale lipoprotéine assurant le transport des phospholipides oxydés (PLOx), est un facteur de risque génétique bien établi de la sténose aortique calcifiante (SAC). On ignore si la présence de Lp(a) est un facteur prédictif de la microcalcification de la valve aortique chez les individus non atteints de SAC. Notre objectif était d'estimer la prévalence de taux élevés de Lp(a) et de PLOx chez des patients atteints de SAC et de déterminer si la microcalcification de la valve aortique est plus marquée chez les individus affichant des taux élevés de Lp(a) en l'absence de SAC. MÉTHODOLOGIE: Nous avons recruté 214 patients atteints de SAC à Montréal et 174 patients atteints de SAC et 108 patients témoins à Québec (Canada). Dans un second groupe de patients présentant des taux de Lp(a) élevés (≥ 75 nmol/l, n = 27) ou faibles (< 75 nmol/l, n = 28), une tomographie par émission de positons au fluorure de sodium marqué au 18F a été réalisée en vue de comparer la valeur moyenne du rapport signal/bruit (RSB) de la valve aortique. RÉSULTATS: Les patients atteints de SAC présentaient des taux de Lp(a) plus élevés de 62,0 % (médiane = 28,7, intervalle interquartile [de 8,2 à 116,6] vs 10,9 [de 3,6 à 28,8] nmol/l, p < 0,0001), des taux de OxPL-apolipoprotéine-B plus élevés de 50 % (2,2 [de 1,3 à 6,0] vs 1,1 [de 0,7 à 2,6] nmol/l, p < 0,0001) et des taux de PLOx-apolipoprotéine(a) plus élevés de 69,9 % (7,3 [de 1,8 à 28,4] vs 2,2 [de 0,8 à 8,4] nmol/l, p < 0,0001) comparativement aux patients non atteints de SAC (toutes les valeurs p < 0,0001). Les patients non atteints de SAC mais présentant des taux élevés de Lp(a) avaient un RSB moyen supérieur de 40 % à celui des individus affichant un faible taux de Lp(a) (RSB moyen = 1,25 ± 0,23 vs 1,15 ± 0,11, p = 0,02). CONCLUSIONS: Des taux élevés de Lp(a) et de PLOx sont associés à la prévalence de la SAC chez des patients étudiés par échocardiographie. Chez les individus présentant un taux élevé de Lp(a), les signes d'une microcalcification de la valve aortique, décelés par tomographie par émission de positons au fluorure de sodium marqué au 18F /tomodensitométrie sont présents avant l'apparition des manifestations cliniques de la SAC.

SELECTION OF CITATIONS
SEARCH DETAIL
...