Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biopolymers ; 112(9): e23461, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34115397

ABSTRACT

Chitooligosaccharides (COS) differ from chitosan by their molar mass: those of COS are defined to be lower than 20 kg mol-1 . Their functionalization is widely described in the literature and leads to the introduction of new properties that broaden their application fields. Like chitosan, COS modification sites are mainly primary amine and hydroxyl groups. Among their chemical modification, one can find amidation or esterification, epoxy-amine/hydroxyl coupling, Schiff base formation, and Michael addition. When depolymerized through nitrous deamination, COS bear an aldehyde at the chain end that can open the way to other chemical reactions and lead to the synthesis of new interesting amphiphilic structures. This article details the recent developments in COS functionalization, primarily focusing on amine and hydroxyl groups and aldehyde-chain end reactions, as well as paying considerable attention to other types of modification. We also describe and compare the different functionalization protocols found in the literature while highlighting potential mistakes made in the chemical structures accompanied with suggestions. Such chemical modification can lead to new materials that are generally nontoxic, biobased, biodegradable, and usable in various applications.


Subject(s)
Chitin , Chitosan , Molecular Weight , Oligosaccharides
2.
Biomacromolecules ; 20(12): 4353-4360, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31617712

ABSTRACT

Five chitosans with different degrees of N-acetylation (DAs), molar masses, and origins were depolymerized by nitrous acid treatment in acidic media, leading to water-soluble 2,5-anhydro-d-mannose chain end oligomers with DPn < 20. The kinetics of the reaction was studied, and the best work conditions were found to be 3 h reaction at 50 °C. It was shown that the DPn of oligomers only depends on the quantity of NaNO2 involved. Molar masses or DAs do not have an impact on the depolymerization process when targeting oligomers with less than 20 units. This depolymerization process also leads to free 2,5-anhydromannofuranose (AMF) that might react with the free amines of obtained oligomers to form imines. This reaction is pH-dependent and in acidic condition leads to the formation of 5-hydromethyl-2-furfural (HMF). At the end, the oligomers were purified by dialysis to get rid of most of the free AMF (<5%) and other residual salts and appeared to have no acute toxicity.


Subject(s)
Chitosan , Mannose/chemistry , Oligosaccharides , Chitosan/chemical synthesis , Chitosan/chemistry , Molecular Weight , Oligosaccharides/chemical synthesis , Oligosaccharides/chemistry , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...