Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 95(2): 225-232, 2019 02.
Article in English | MEDLINE | ID: mdl-30373433

ABSTRACT

PURPOSE: In 2012, the Organization for Economic Cooperation and Development (OECD) formally launched the Adverse Outcome Pathway (AOP) Programme. The AOP framework has the potential for predictive utility in identifying early biological endpoints linked to adverse effects. It uses the weight of correlative evidence to identify a minimal set of measurable key events that link molecular initiating events to an adverse outcome. AOPs have the capability to identify knowledge gaps and priority areas for future research based on relevance to an adverse outcome. In addition, AOPs can identify pathways that are common among multiple stressors, thereby allowing for the possibility of refined risk assessments based on co-exposure considerations. The AOP framework is increasingly being used in chemical and ecological risk assessment; however, its use in the development of radiation-specific pathways has yet to be fully explored. To bring awareness of the AOP framework to the Canadian radiation community, a workshop was held in Canada in June 2018 that brought together radiation experts from Health Canada, the Canadian Nuclear Laboratories, and the Canadian Nuclear Safety Commission. METHODS: The purpose of the workshop was to share knowledge on the AOP framework, specifically (1) to introduce the concept of the AOP framework and its possible utility to Canadian radiation experts; (2) to provide examples on how it has advanced risk assessment; (3) to discuss an illustrative example specific to ionizing radiation; and lastly (4) to identify the broad benefits and challenges of the AOP framework to the radiation community. RESULTS: The participants showed interest in the framework, case examples were described and areas of challenge were identified. Herein, we summarize the outcomes of the workshop. CONCLUSIONS: Overall, participants agreed that by building AOPs in the radiation field, a network of data-sharing initiatives will enhance our interpretation of existing knowledge where current scientific evidence is minimal. They would provide new avenues to understand effects at low-dose and dose-rates and help to quantify the combined effect of multiple stressors on shared mechanistic pathways.


Subject(s)
Adverse Outcome Pathways , Radiation Protection , Humans , Radiation Dosage , Risk Assessment
2.
J Res Natl Inst Stand Technol ; 119: 277-95, 2014.
Article in English | MEDLINE | ID: mdl-26601033

ABSTRACT

Post-irradiation stability of high-dose dosimeters has traditionally been an important measurement influence quantity. Though the exceptional stability of the alanine dosimeter response with time has rendered this factor a non-issue for routine work, the archival quality of the alanine dosimeter has not been characterized. Here the alanine pellet dosimeter response is measured up to seven years post-irradiation for a range of absorbed doses. This long-term study is accompanied by an examination of the environmental influence quantities (e.g., ambient light) on the relatively short-term (3-4 month) stability of both pellet and film commercial dosimeters. Both dosimeter types demonstrated exceptional stability in the short term and proved to be relatively insensitive to common influence quantities. The long-term data revealed a complex dose-dependent response trend.

3.
J Res Natl Inst Stand Technol ; 118: 403-18, 2013.
Article in English | MEDLINE | ID: mdl-26401441

ABSTRACT

Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies.

4.
Radiat Meas ; 42(6): 1037-1040, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-19590746

ABSTRACT

The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed "accident doses", were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine[ settlements were in the range from a few tens of mGy to approximately 100 mGy.

5.
Radiat Prot Dosimetry ; 120(1-4): 235-7, 2006.
Article in English | MEDLINE | ID: mdl-16645000

ABSTRACT

Alanine dosimetry is now well established both as a reference and routine dosemeter for industrial irradiation processing. Accurate dosimetry under the relatively harsh conditions of industrial processing requires a characterisation of the parameters that influence the dosemeter response. The temperature of the dosemeter during irradiation is a difficult quantity to measure so that the accuracy of the temperature coefficient that governs the dosemeter response becomes a critical factor. Numerous publications have reported temperature coefficients for several types of alanine dosemeters. The observed differences in the measured values were commonly attributed to the differences in the polymer binder or the experimental design of the measurement. However, the data demonstrated a consistent difference in the temperature coefficients between l-alanine and dl-alanine. Since there were no commonalities in the dosemeter composition or the measurement methods applied, a clear conclusion is not possible. To resolve this issue, the two isomeric forms of alanine dosemeters were prepared and irradiated in an identical manner. The results indicated that the dl-alanine temperature coefficient is more than 50% higher than the l-alanine temperature coefficient.


Subject(s)
Alanine/chemistry , Alanine/radiation effects , Electron Spin Resonance Spectroscopy/instrumentation , Thermoluminescent Dosimetry/instrumentation , Dose-Response Relationship, Radiation , Electron Spin Resonance Spectroscopy/methods , Equipment Design , Equipment Failure Analysis , Materials Testing , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Temperature , Thermoluminescent Dosimetry/methods
6.
Radiat Prot Dosimetry ; 118(4): 479-81, 2006.
Article in English | MEDLINE | ID: mdl-16373471

ABSTRACT

Sucrose and common household sugars (e.g. cane) have been studied as dosemeters for a wide variety of applications. However, previous studies of the post-irradiation time dependence of irradiated sugar did not include an electron paramagnetic resonance (EPR) reference material. This work employs synthetic ruby as an EPR reference material to remove significant spectrometer/environmental influences on the measured time-dependent changes in the EPR spectral amplitude of irradiated sucrose. As such, these more accurate measurements should replace the previously published data.


Subject(s)
Electron Spin Resonance Spectroscopy , Radiometry , Sucrose/radiation effects , Time Factors
7.
Appl Radiat Isot ; 56(6): 917-29, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12102352

ABSTRACT

A method for evaluating the overall uncertainty of alanine EPR transfer dosimetry in the therapeutic dose range is described. The method uses experimental data on EPR signal reproducibility from replicate dosimeters irradiated to low doses (1-5 Gy), estimates of Type B uncertainties, and Monte Carlo simulations of heteroscedastic orthogonal linear regression. A Bruker ECS106 spectrometer and Bruker alanine dosimeters have been used for this evaluation. The results demonstrate that alanine dosimetry can be used for transfer dosimetry in that range with the overall uncertainty 1.5-4% (1sigma) depending on the dose, the number of replicate dosimeters. and the duration of the calibration session (the session should not exceed one working day).


Subject(s)
Alanine/therapeutic use , Radiopharmaceuticals/therapeutic use , Calibration , Electron Spin Resonance Spectroscopy , Monte Carlo Method , Radiotherapy Dosage , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...