Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(42): eadi4966, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37851807

ABSTRACT

BaNi2As2 is a structural analog of the pnictide superconductor BaFe2As2, which, like the iron-based superconductors, hosts a variety of ordered phases including charge density waves (CDWs), electronic nematicity, and superconductivity. Upon isovalent Sr substitution on the Ba site, the charge and nematic orders are suppressed, followed by a sixfold enhancement of the superconducting transition temperature (Tc). To understand the mechanisms responsible for enhancement of Tc, we present high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements of the Ba1-xSrxNi2As2 series, which agree well with our density functional theory (DFT) calculations throughout the substitution range. Analysis of our ARPES-validated DFT results indicates a Lifshitz transition and reasonably nested electron and hole Fermi pockets near optimal substitution where Tc is maximum. These nested pockets host Ni dxz/dyz orbital compositions, which we associate with the enhancement of nematic fluctuations, revealing unexpected connections to the iron-pnictide superconductors. This gives credence to a scenario in which nematic fluctuations drive an enhanced Tc.

2.
Nat Commun ; 9(1): 26, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29295992

ABSTRACT

Strong diffusive or incoherent electronic correlations are the signature of the strange-metal normal state of the cuprate superconductors, with these correlations considered to be undressed or removed in the superconducting state. A critical question is if these correlations are responsible for the high-temperature superconductivity. Here, utilizing a development in the analysis of angle-resolved photoemission data, we show that the strange-metal correlations don't simply disappear in the superconducting state, but are instead converted into a strongly renormalized coherent state, with stronger normal state correlations leading to stronger superconducting state renormalization. This conversion begins well above T C at the onset of superconducting fluctuations and it greatly increases the number of states that can pair. Therefore, there is positive feedback--the superconductive pairing creates the conversion that in turn strengthens the pairing. Although such positive feedback should enhance a conventional pairing mechanism, it could potentially also sustain an electronic pairing mechanism.

3.
Sci Rep ; 7: 40876, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102368

ABSTRACT

Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.

4.
Nat Commun ; 7: 11367, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27102065

ABSTRACT

The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed in doped cuprates-pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the material's proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation.

5.
Nano Lett ; 15(12): 8245-9, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26583739

ABSTRACT

Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. This scheme has led to the first observation of the quantum Hall effect in Bi2Se3.

6.
Nature ; 446(7133): E5, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17361133

ABSTRACT

The possibility that a pairing boson might act as the 'glue' to bind electrons into a Cooper pair in superconductors with a high critical temperature (T(c)) is being actively pursued in condensed-matter physics. Gweon et al. claim that there is a large and unusual oxygen-isotope effect on the electronic structure, indicating that phonons have a special importance in high-temperature superconductors. However, we are unable to detect this unusual oxygen-isotope effect in new data collected under almost identical material and experimental conditions. Our findings point towards a more conventional influence of phonons in these materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...