Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Commun ; 5(6): fcad304, 2023.
Article in English | MEDLINE | ID: mdl-38025277

ABSTRACT

Stereo-EEG is a minimally invasive technique used to localize the origin of epileptic activity (the epileptogenic zone) in patients with drug-resistant epilepsy. However, current stereo-EEG trajectory planning methods are agnostic to the spatial recording sensitivity of implanted electrodes. In this study, we used image-based patient-specific computational models to design optimized stereo-EEG electrode configurations. Patient-specific optimized electrode configurations exhibited substantially higher recording sensitivity than clinically implanted configurations, and this may lead to a more accurate delineation of the epileptogenic zone. The optimized configurations also achieved equally good or better recording sensitivity with fewer electrodes compared with clinically implanted configurations, and this may reduce the risk for complications, including intracranial haemorrhage. This approach improves localization of the epileptogenic zone by transforming the clinical use of stereo-EEG from a discrete ad hoc sampling to an intelligent mapping of the regions of interest.

2.
Clin Neurophysiol ; 145: 26-35, 2023 01.
Article in English | MEDLINE | ID: mdl-36403433

ABSTRACT

OBJECTIVE: To determine whether dipoles are an appropriate simplified representation of neural sources for stereo-EEG (sEEG). METHODS: We compared the distributions of voltages generated by a dipole, biophysically realistic cortical neuron models, and extended regions of cortex to determine how well a dipole represented neural sources at different spatial scales and at electrode to neuron distances relevant for sEEG. We also quantified errors introduced by the dipole approximation of neural sources in sEEG source localization using standardized low-resolution electrotomography (sLORETA). RESULTS: For pyramidal neurons, the coefficient of correlation between voltages generated by a dipole and neuron model were > 0.9 for distances > 1 mm. For small regions of cortex (∼0.1 cm2), the error in voltages between a dipole and region was < 100 µV for all distances. However, larger regions of active cortex (>5 cm2) yielded > 50 µV errors within 1.5 cm of an electrode when compared to single dipoles. Finally, source localization errors were < 5 mm when using dipoles to represent realistic neural sources. CONCLUSIONS: Single dipoles are an appropriate source model to represent both single neurons and small regions of active cortex, while multiple dipoles are required to represent large regions of cortex. SIGNIFICANCE: Dipoles are computationally tractable and valid source models for sEEG.


Subject(s)
Electroencephalography , Neurons , Humans , Electroencephalography/methods , Electrodes , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...