Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Function (Oxf) ; 2(6): zqab050, 2021.
Article in English | MEDLINE | ID: mdl-35330793

ABSTRACT

Mitochondrial reactive oxygen species (ROS) play important roles in cellular signaling; however, certain pathological conditions such as ischemia/reperfusion (I/R) injury disrupt ROS homeostasis and contribute to cell death. A major impediment to developing therapeutic measures against oxidative stress-induced cellular damage is the lack of a quantitative framework to identify the specific sources and regulatory mechanisms of mitochondrial ROS production. We developed a thermodynamically consistent, mass-and-charge balanced, kinetic model of mitochondrial ROS homeostasis focused on redox sites of electron transport chain complexes I, II, and III. The model was calibrated and corroborated using comprehensive data sets relevant to ROS homeostasis. The model predicts that complex I ROS production dominates other sources under conditions favoring a high membrane potential with elevated nicotinamide adenine dinucleotide (NADH) and ubiquinol (QH2) levels. In general, complex I contributes to significant levels of ROS production under pathological conditions, while complexes II and III are responsible for basal levels of ROS production, especially when QH2 levels are elevated. The model also reveals that hydrogen peroxide production by complex I underlies the non-linear relationship between ROS emission and O2 at low O2 concentrations. Lastly, the model highlights the need to quantify scavenging system activity under different conditions to establish a complete picture of mitochondrial ROS homeostasis. In summary, we describe the individual contributions of the electron transport system complex redox sites to total ROS emission in mitochondria respiring under various combinations of NADH- and Q-linked respiratory fuels under varying workloads.


Subject(s)
Hydrogen Peroxide , Superoxides , Superoxides/metabolism , Reactive Oxygen Species/metabolism , Electron Transport , Hydrogen Peroxide/metabolism , Peroxides/metabolism , NAD/metabolism , Electron Transport Complex I/metabolism
2.
Mitochondrion ; 51: 126-139, 2020 03.
Article in English | MEDLINE | ID: mdl-31982614

ABSTRACT

Elevated calcium and reactive oxygen species (ROS) are responsible for the bulk of cell death occurring in a variety of clinical settings that include acute coronary events, cerebrovascular accidents, and acute kidney injury. It is commonly believed that calcium and ROS participate in a viscous cycle during these events. However, the precise feedback mechanisms are unknown. We quantitatively demonstrate in this study that, on the contrary, calcium does not stimulate free radical production but suppresses it. Isolated mitochondria from guinea pig hearts were energized with a variety of substrates and exposed to calcium concentrations designed to induce moderate calcium overload conditions associated with ischemia/reperfusion injury but do not elicit the well-known mitochondrial permeability transition phenomenon. Metabolic function and free radical emission were simultaneously quantified using high-resolution respirometry and fluorimetry. Membrane potential, high amplitude swelling, and calcium dynamics were also quantified in parallel. Our results reveal that calcium overload does not lead to excessive ROS emission but does decrease ADP stimulated respiration rates for NADH-dependent pathways. Moreover, we developed an empirical model of mitochondrial free radical homeostasis to identify the processes that are different for each substrate and calcium condition. In summary, we show that in healthy guinea pig mitochondria, calcium uptake and free radical generation do not contribute to a viscous cycle and that the relationship between net free radical production and oxygen concentration is hyperbolic. Altogether, these results lay out an important foundation necessary to quantitatively determine the role of calcium in IR injury and ROS production.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Hydrogen Peroxide/metabolism , Mitochondria, Heart/pathology , Reperfusion Injury/pathology , Acute Coronary Syndrome/pathology , Acute Kidney Injury/pathology , Animals , Calcium/pharmacology , Energy Metabolism/physiology , Guinea Pigs , Membrane Potential, Mitochondrial/physiology , Mitochondrial Swelling/physiology , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...