Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Energy Environ Sci ; 17(2): 760-769, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38269299

ABSTRACT

Despite the rapid rise in the performance of a variety of perovskite optoelectronic devices with vertical charge transport, the effects of ion migration remain a common and longstanding Achilles' heel limiting the long-term operational stability of lead halide perovskite devices. However, there is still limited understanding of the impact of tin (Sn) substitution on the ion dynamics of lead (Pb) halide perovskites. Here, we employ scan-rate-dependent current-voltage measurements on Pb and mixed Pb-Sn perovskite solar cells to show that short circuit current losses at lower scan rates, which can be traced to the presence of mobile ions, are present in both kinds of perovskites. To understand the kinetics of ion migration, we carry out scan-rate-dependent hysteresis analyses and temperature-dependent impedance spectroscopy measurements, which demonstrate suppressed ion migration in Pb-Sn devices compared to their Pb-only analogues. By linking these experimental observations to first-principles calculations on mixed Pb-Sn perovskites, we reveal the key role played by Sn vacancies in increasing the iodide ion migration barrier due to local structural distortions. These results highlight the beneficial effect of Sn substitution in mitigating undesirable ion migration in halide perovskites, with potential implications for future device development.

2.
Nanoscale ; 15(42): 17055-17067, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37846794

ABSTRACT

The introduction of copper (Cu) impurity in semiconductor CdSe quantum dots (QDs) gives rise to unique photoluminescence (PL) bands exhibiting distinctive characteristics, like broad line width, significant Stokes shift, and complex temporal decay. The atomistic origins of these spectral features are yet to be understood comprehensively. We employed multiple computational techniques to systematically study the impact of the spatial heterogeneity of Cu atoms on the stability and photophysical properties, including the emission linewidth of doped QDs under ambient conditions. The Cu substitution introduces a spin-polarized intragap state, the energetic position of which is strongly dependent on the dopant location and causes spectral broadening in QD ensembles. Furthermore, the dopant dynamics under ambient conditions are significantly influenced by the specific arrangement of Cu within the QDs. The dynamic electronic structures of surface-doped CdSe illustrate more pronounced perturbations and vary the mid-gap state position more drastically than those of the core-doped QDs. Vibronic coupling broadens the photoluminescence peaks associated with the conduction band-to-defect level transition for individual QDs. These insights into the dynamic structure-photophysical property relationship suggest viable approaches, such as tuning the operational temperature and selective co-doping, to enhance the functional performances of doped CdSe QDs strategically.

SELECTION OF CITATIONS
SEARCH DETAIL
...