Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20148, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978311

ABSTRACT

This research studied how different types and concentrations of encapsulating agents impacted freeze-dried coconut water products. Volatile aroma and physicochemical product characteristics were evaluated. The encapsulating agents were maltodextrin 4-8% (w/v), polydextrose 4-8% (w/v) and xanthan gum 0.1-0.3% (w/v). A plate freezer and an air blast freezer were used to pre-freeze the coconut water before drying. Freezing time had no impact on moisture content and water activity. The flavor compounds of coconut water is composed of alkanes, aldehyde, ketones, organic acids and some other flavor substances. Encapsulating agents are the main factors affecting the flavor of coconut water. Optimal conditions for producing dried coconut water were adding polydextrose at a concentration of 8%. Volatile compounds were assessed under different conditions of SPME- GC-TOFMS. The composition of flavor compounds in coconut water is complex and mainly includes esters, aldehydes, and phenols. Results showed that encapsulating agents improved the volatile aroma of dried coconut water products.


Subject(s)
Cocos , Volatile Organic Compounds , Odorants , Freezing , Aldehydes , Desiccation , Volatile Organic Compounds/chemistry
2.
J Food Sci Technol ; 53(9): 3485-3494, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27777454

ABSTRACT

The objective of this study was to investigate the effect of soy protein isolate on functional properties and consumer acceptance of gluten-free rice spaghetti (GFRS) made from rice flour. Dry-milled high-amylose (Chai Nat 1) rice flour was premixed with dry-milled waxy (RD 6) rice flour at a ratio of 90:10 (w/w) with the soy protein isolate (SPI) concentration varying between 0, 2.5, 5.0, 7.5, 10.0 %, db. The GFRS formulation was processed using a co-rotating twin-screw extruder up to 95 °C with a screw speed of 220 rpm, 32 % moisture content, and then dried at 40 °C. The GFRS samples were analyzed by differential scanning calorimetry (DSC), X-ray diffraction, scanning electron microscopy (SEM) and texture parameters. Increasing SPI decreased the starch retrogradation of GFRS, whereas the enthalpy change of the amylose-lipid complex increased and crystallinity decreased. SEM revealed that the surface of GFRS containing SPI was much more porous than that of GFRS without SPI. The cooked GFRS containing 5.0 % SPI showed the best eating quality with increased firmness and tensile strength, and decrease stickiness. The GFRS samples were evaluated on the bases of cooking qualities and sensory evaluation. The results showed that the GFRS containing 5.0 % SPI decrease the cooking time from 17.6 to 13.7 min and cooking loss from 25.4 to 17.0 %. Overall acceptability of cooked GFRS containing 5.0 % SPI was the highest among all GFRS samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...