Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 17(3): 035005, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32357356

ABSTRACT

OBJECTIVE: Retinal implants have the potential to restore some sight in patients with retinal degeneration. The PRIMA implant's novel design features simpler insertion and no transscleral cabling or extraocular components. This in vitro study investigated PRIMA's durability under real time and accelerated conditions and estimated the device's lifespan in vivo. APPROACH: Two potential failure modes were examined: corrosion and overstimulation. Real-time aging was tested using implants immersed in balanced saline solution (BSS) at 37 °C, mimicking the intraocular environment. Accelerated aging was examined at 77 °C (Arrhenius theory). Confirmatory testing of acceleration factor was performed using different temperatures (37 °C-87 °C) and weakened implant coatings. The effect of repeated maximum stimulation was tested using a pulsed infrared laser (6x acceleration factor). Data were used to estimate device lifespan. MAIN RESULTS: 175 implants were tested for up to 33 months. No corrosion or water ingress was observed after approximately 20 accelerated years. A pixel failure rate of 0.15% was recorded after 10 accelerated years' stimulation. The derived lifespan estimation for the PRIMA implant was 27.0 years with a reliability of 90% (95% confidence interval). SIGNIFICANCE: The PRIMA implant was found to be robust, with in vitro reliability of at least 10 years. The PRIMA implant shows durability and functionality for clinically relevant timespans under similar environmental conditions to the human eye. These results require in vivo confirmation.


Subject(s)
Visual Prosthesis , Electrodes, Implanted , Humans , Longevity , Reproducibility of Results , Retina
2.
PLoS One ; 15(4): e0230713, 2020.
Article in English | MEDLINE | ID: mdl-32267845

ABSTRACT

PURPOSE: To evaluate the surgical technique for subretinal implantation of two sizes of PRIMA photovoltaic wireless microchip in two animal models, and refine these surgical procedures for human trials. METHODS: Cats and Macaca fascicularis primates with healthy retina underwent vitrectomy surgery and were implanted with subretinal wireless photovoltaic microchip at the macula/central retina. The 1.5mm PRIMA chip was initially studied in feline eyes. PRIMA implant (2mm,1.5mm sizes) arrays were studied in primates. Feasibility of subretinal chip implantation was evaluated with a newly-developed surgical technique, with surgical complications and adverse events recorded. RESULTS: The 1.5mm implant was placed in the central retina of 11 feline eyes, with implantation duration 43-106 days. The 1.5mm implant was correctly positioned into central macula of 11 primate eyes, with follow-up periods of minimum 6 weeks (n = 11), 2 years (n = 2), and one eye for 3 years. One primate eye underwent multi-chip 1.5mm implantation using two 1.5mm chips. The 2mm implant was delivered to 4 primate eyes. Optical coherence tomography confirmed correct surgical placement of photovoltaic arrays in the subretinal space in all 26 eyes. Intraoperative complications in primate eyes included retinal tear, macular hole, retinal detachment, and vitreous hemorrhage that resolved spontaneously. Postoperatively, there was no case of significant ocular inflammation in the 1.5mm implant group. CONCLUSIONS: We report subretinal implantation of 1.5mm and 2mm photovoltaic arrays in the central retina of feline and central macula of primate eyes with a low rate of device-related complications. The in vivo PRIMA implantation technique has been developed and refined for use for a 2mm PRIMA implant in ongoing human trials.


Subject(s)
Microtechnology/instrumentation , Prostheses and Implants , Retina/surgery , Wireless Technology , Animals , Cats , Macaca fascicularis , Safety
3.
Nat Biomed Eng ; 4(2): 172-180, 2020 02.
Article in English | MEDLINE | ID: mdl-31792423

ABSTRACT

Retinal dystrophies and age-related macular degeneration related to photoreceptor degeneration can cause blindness. In blind patients, although the electrical activation of the residual retinal circuit can provide useful artificial visual perception, the resolutions of current retinal prostheses have been limited either by large electrodes or small numbers of pixels. Here we report the evaluation, in three awake non-human primates, of a previously reported near-infrared-light-sensitive photovoltaic subretinal prosthesis. We show that multipixel stimulation of the prosthesis within radiation safety limits enabled eye tracking in the animals, that they responded to stimulations directed at the implant with repeated saccades and that the implant-induced responses were present two years after device implantation. Our findings pave the way for the clinical evaluation of the prosthesis in patients affected by dry atrophic age-related macular degeneration.


Subject(s)
Macular Degeneration/rehabilitation , Saccades , Vision, Ocular/physiology , Visual Perception , Visual Prosthesis , Animals , Disease Models, Animal , Eye Movement Measurements , Macaca fascicularis , Macular Degeneration/physiopathology , Male , Photic Stimulation , Retinal Ganglion Cells/physiology
4.
Nanotechnology ; 22(3): 035301, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21149955

ABSTRACT

We have developed a novel method to grow carbon nanotubes in a periodic structure using a simple one-step self-assembly process. In this approach, monodispersed nanospheres are utilized to assemble smaller nanoparticle catalysts into an ordered periodic pattern. Using this process, we have grown carbon nanotube bundles into a honeycomb structure. The proposed method eliminates the need for lithography and material deposition, greatly reducing the fabrication complexity and cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...