Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 57(1): 60-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-18841408

ABSTRACT

The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.


Subject(s)
Boron/toxicity , Cladocera/drug effects , Trace Elements/toxicity , Animals , Calcium Carbonate/analysis , Carbon/analysis , Chlorides/analysis , Cladocera/metabolism , Environmental Monitoring , Fresh Water/chemistry , Hydrogen-Ion Concentration/drug effects , Sodium/analysis , Toxicity Tests
2.
Environ Toxicol Chem ; 26(8): 1717-25, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17702347

ABSTRACT

The chronic (early life stage) toxicity of silver to rainbow trout (Oncorhynchus mykiss) was determined in flow-through exposures. Rainbow trout embryos were exposed to silver (as AgNO3) from 48 h or less postfertilization to 30 d postswimup in soft water in the presence and absence of 49 mg/L of NaCl (30 mg/L of Cl). The studies determined effect levels for rainbow trout exposed throughout an extended development period and assessed possible protective effects of sodium chloride. Lowest-observed-effect concentrations were greater than 1.25 microg/L of dissolved silver for survival, mean day to hatch, mean day to swimup, and whole-body sodium content in both studies. Whole-body silver concentrations increased significantly at 0.13 microg/L of dissolved silver in unmodified water and at 1.09 microg/L of dissolved silver in amended water. The maximum-acceptable toxicant concentration for growth was greater than 1.25 microg/L of dissolved silver in unmodified water and 0.32 microg/L of dissolved silver in amended water. Whole-body silver concentrations were more sensitive than survival and growth end points in unmodified water. Interpretation of sodium chloride effects on chronic silver toxicity to rainbow trout was complicated by differences in measured effect levels that were potentially the result of strain differences between test organisms in the two studies.


Subject(s)
Fertilization/drug effects , Life Cycle Stages/drug effects , Oncorhynchus mykiss/physiology , Silver/toxicity , Sodium Chloride/toxicity , Water Pollutants, Chemical/toxicity , Animals , Body Burden , Fertilization/physiology , Fresh Water , Life Cycle Stages/physiology , Rivers/chemistry , Species Specificity , Time Factors
3.
Environ Toxicol Chem ; 25(10): 2683-91, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17022409

ABSTRACT

Ballast water transport of nonindigenous species (NIS) is recognized as a significant contributor to biological invasions and a threat to coastal ecosystems. Recently, the use of ozone as an oxidant to eliminate NIS from ballast while ships are in transit has been considered. We determined the toxicity of ozone in artificial seawater (ASW) for five species of marine organisms in short-term (< or = 5 h) batch exposures. Larval topsmelt (Atherinops affinis) and juvenile sheepshead minnows (Cyprinodon variegatus) were the most sensitive to oxidant exposure, and the mysid shrimp (Americamysis bahia) was the most sensitive invertebrate. Conversely, benthic amphipods (Leptocheirus plumulosus and Rhepoxinius abronius) were the least sensitive of all species tested. Mortality from ozone exposure occurred quickly, with median lethal times ranging from 1 to 3 h for the most sensitive species, although additional mortality was observed 1 to 2 d following ozone exposure. Because ozone does not persist in seawater, toxicity likely resulted from bromide ion oxidation to bromine species (HOBr and OBr-), which persist as residual toxicants after at least 2 d of storage. Total residual oxidant (TRO; as Br2) formation resulting from ozone treatment was measured in ASW and four site-specific natural seawaters. The rate of TRO formation correlated with salinity, but dissolved organic carbon and total dissolved nitrogen did not affect TRO concentrations. Acute toxicity tests with each water over 48 h using mysid shrimp, topsmelt, and sheepshead minnows yielded results similar to those of batch exposure. Addition of sodium thiosulfate (Na2S2O3) to ozonated waters resulted in TRO elimination and survival of all organisms. Our results provide necessary information for the optimization of an efficacious ozone ballast water treatment system.


Subject(s)
Marine Biology , Ozone/toxicity , Seawater , Animals
4.
Sci Total Environ ; 366(2-3): 549-78, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16406490

ABSTRACT

Fish were collected from 16 sites on rivers in the Columbia River Basin (CRB) from September 1997 to April 1998 to document temporal and spatial trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Columbia River and on the Snake, Willamette, Yakima, Salmon, and Flathead Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) were the targeted species. Fish were field-examined for external and internal lesions, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using instrumental methods and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, pesticide concentrations were greatest in fish from lower CRB sites and elemental concentrations were greatest in fish from upper CRB sites. These patterns reflected land uses. Lead (Pb) concentrations in fish from the Columbia River at Northport and Grand Coulee, Washington (WA) exceeded fish and wildlife toxicity thresholds (>0.4 microg/g). Selenium (Se) concentrations in fish from the Salmon River at Riggins, Idaho (ID), the Columbia River at Vernita Bridge, WA, and the Yakima River at Granger, WA exceeded toxicity thresholds for piscivorous wildlife (>0.6 microg/g). Mercury (Hg) concentrations in fish were elevated throughout the basin but were greatest (>0.4 microg/g) in predatory fish from the Salmon River at Riggins, ID, the Yakima River at Granger, WA, and the Columbia River at Warrendale, Oregon (OR). Residues of p,p'-DDE were greatest (>0.8 microg/g) in fish from agricultural areas of the Snake, Yakima, and Columbia River basins but were not detected in upper CRB fish. Other organochlorine pesticides did not exceed toxicity thresholds in fish or were detected infrequently. Total polychlorinated biphenyls (PCBs; >0.11 microg/g) and TCDD-EQs (>5 pg/g) exceeded wildlife guidelines in fish from the middle and lower CRB, and ethoxyresorufin O-deethylase (EROD) activity was also elevated at many of the same sites. Temporal trend analysis indicated decreasing or stable concentrations of Pb, Se, Hg, p,p'-DDE, and PCBs at most sites where historical data were available. Altered biomarkers were noted in fish throughout the CRB. Fish from some stations had responded to chronic contaminant exposure as indicated by fish health and reproductive biomarker results. Although most fish from some sites had grossly visible external or internal lesions, histopathological analysis determined these to be inflammatory responses associated with helminth or myxosporidian parasites. Many largescale sucker from the Columbia River at Northport and Grand Coulee, WA had external lesions and enlarged spleens, which were likely associated with infections. Intersex male smallmouth bass (Micropterus dolomieu) were found in the Snake River at Lewiston, ID and the Columbia River at Warrendale, OR. Male bass, carp, and largescale sucker containing low concentrations of vitellogenin were common in the CRB, and comparatively high concentrations (>0.3 mg/mL) were measured in male fish from the Flathead River at Creston, Montana, the Snake River at Ice Harbor Dam, WA, and the Columbia River at Vernita Bridge, WA and Warrendale, OR. Results from our study and other investigations indicate that continued monitoring in the CRB is warranted to identify consistently degraded sites and those with emerging problems.


Subject(s)
Bass , Cypriniformes , Hydrocarbons, Chlorinated/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Arsenic/analysis , Biomarkers , Cytochrome P-450 CYP1A1/metabolism , Environmental Monitoring , Female , Liver/enzymology , Male , Northwestern United States , Pesticides/analysis , Rivers , Vitellogenins/metabolism
5.
Sci Total Environ ; 350(1-3): 161-93, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16227080

ABSTRACT

We collected, examined, and analyzed 368 fish of seven species from 10 sites on rivers of the Rio Grande Basin (RGB) during late 1997 and early 1998 to document temporal and geographic trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Rio Grande and on the Arroyo Colorado and Pecos River in Texas (TX), New Mexico (NM), and Colorado. Common carp (Cyprinus carpio) and largemouth bass (Micropterus salmoides) were the targeted species. Fish were examined in the field for internal and external visible gross lesions, selected organs were weighed to compute ponderal and organosomatic indices, and samples of tissues and fluids were obtained and preserved for analysis of fish health and reproductive biomarkers. Whole fish from each station were composited by species and gender and analyzed for organochlorine chemical residues and elemental contaminants using instrumental methods, and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, fish from lower RGB stations contained greater concentrations of organochlorine pesticide residues and appeared to be less healthy than those from sites in the central and upper parts of the basin, as indicated by a general gradient of residue concentrations and biomarker responses. A minimal number of altered biomarkers and few or no elevated contaminant concentrations were noted in fish from the upper RGB. The exception was elevated concentrations [up to 0.46 microg/g wet-weight (ww)] of total mercury (Hg) in predatory species from the Rio Grande at Elephant Butte Reservoir, NM, a condition documented in previous studies. Arsenic (As) and selenium (Se) concentrations were greatest in fish from sites in the central RGB; Se concentrations in fish from the Pecos River at Red Bluff Lake, TX and from the Rio Grande at Langtry, TX and Amistad International Reservoir, TX exceeded published fish and wildlife toxicity thresholds. In the lower RGB, residues of p,p'-DDT metabolites (

Subject(s)
Fishes , Water Pollutants, Chemical/toxicity , Animals , Arsenic/analysis , Arsenic/toxicity , Biomarkers , Colorado , Cytochrome P-450 CYP1A1/metabolism , Environmental Monitoring , Female , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/toxicity , Macrophages/drug effects , Macrophages/immunology , Male , Metals, Heavy/analysis , Metals, Heavy/toxicity , New Mexico , Ovary/drug effects , Ovary/pathology , Pesticides/analysis , Pesticides/toxicity , Rivers , Skin/drug effects , Skin/pathology , Spleen/drug effects , Spleen/immunology , Testis/drug effects , Testis/pathology , Texas , Vitellogenins/blood , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...