Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Physiol ; 10(1): coac066, 2022.
Article in English | MEDLINE | ID: mdl-36247693

ABSTRACT

Coral reefs are increasingly experiencing stressful conditions, such as high temperatures, that cause corals to undergo bleaching, a process where they lose their photosynthetic algal symbionts. Bleaching threatens both corals' survival and the health of the reef ecosystems they create. One possible mechanism for corals to resist bleaching is through association with stress-tolerant symbionts, which are resistant to bleaching but may be worse partners in mild conditions. Some corals have been found to associate with multiple symbiont species simultaneously, which potentially gives them access to the benefits of both stress-sensitive and -tolerant symbionts. However, within-host competition between symbionts may lead to competitive exclusion of one partner, and the consequences of associating with multiple partners simultaneously are not well understood. We modify a mechanistic model of coral-algal symbiosis to investigate the effect of environmental conditions on within-host competitive dynamics between stress-sensitive and -tolerant symbionts and the effect of access to a tolerant symbiont on the dynamics of recovery from bleaching. We found that the addition of a tolerant symbiont can increase host survival and recovery from bleaching in high-light conditions. Competitive exclusion of the tolerant symbiont occurred slowly at intermediate light levels. Interestingly, there were some cases of post-bleaching competitive exclusion after the tolerant symbiont had helped the host recover.

2.
Conserv Physiol ; 10(1): coac026, 2022.
Article in English | MEDLINE | ID: mdl-35539007

ABSTRACT

Dynamic Energy Budget models relate whole organism processes such as growth, reproduction and mortality to suborganismal metabolic processes. Much of their potential derives from extensions of the formalism to describe the exchange of metabolic products between organisms or organs within a single organism, for example the mutualism between corals and their symbionts. Without model simplification, such models are at risk of becoming parameter-rich and hence impractical. One natural simplification is to assume that some metabolic processes act on 'fast' timescales relative to others. A common strategy for formulating such models is to assume that 'fast' processes equilibrate immediately, while 'slow' processes are described by ordinary differential equations. This strategy can bring a subtlety with it. What if there are multiple, interdependent fast processes that have multiple equilibria, so that additional information is needed to unambiguously specify the model dynamics? This situation can easily arise in contexts where an organism or community can persist in a 'healthy' or an 'unhealthy' state with abrupt transitions between states possible. To approach this issue, we offer the following: (a) a method to unambiguously complete implicitly defined models by adding hypothetical 'fast' state variables; (b) an approach for minimizing the number of additional state variables in such models, which can simplify the numerical analysis and give insights into the model dynamics; and (c) some implications of the new approach that are of practical importance for model dynamics, e.g. on the bistability of flux dynamics and the effect of different initialization choices on model outcomes. To demonstrate those principles, we use a simplified model for root-shoot dynamics of plants and a related model for the interactions between corals and endosymbiotic algae that describes coral bleaching and recovery.

3.
J Theor Biol ; 541: 111087, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35276225

ABSTRACT

Many corals form close associations with a diverse assortment of coral-dwelling fishes and other fauna. As coral reefs around the world are increasingly threatened by mass bleaching events, it is important to understand how these biotic interactions influence corals' susceptibility to bleaching. We used dynamic energy budget modeling to explore how nitrogen excreted by coral-dwelling fish affects the physiological performance of host corals. In our model, fish presence influenced the functioning of the coral-Symbiodiniaceae symbiosis by altering nitrogen availability, and the magnitude and sign of these effects depended on environmental conditions. Although our model predicted that fish-derived nitrogen can promote coral growth, the relationship between fish presence and coral tolerance of photo-oxidative stress was non-linear. Fish excretions supported denser symbiont populations that provided protection from incident light through self-shading. However, these symbionts also used more of their photosynthetic products for their own growth, rather than sharing with the coral host, putting the coral holobiont at a higher risk of becoming carbon-limited and bleaching. The balance between the benefits of increased symbiont shading and costs of reduced carbon sharing depended on environmental conditions. Thus, while there were some scenarios under which fish presence increased corals' tolerance of light stress, fish could also exacerbate bleaching and slow or prevent subsequent recovery. We discuss how the contrast between the potentially harmful effects of fish predicted by our model and results of empirical studies may relate to key model assumptions that warrant further investigation. Overall, this study provides a foundation for future work on how coral-associated fauna influence the bioenergetics of their host corals, which in turn has implications for how these corals respond to bleaching-inducing stressors.


Subject(s)
Anthozoa , Animals , Carbon , Coral Reefs , Fertilization , Fishes , Nitrogen , Symbiosis/physiology
4.
Ecology ; 102(5): e03304, 2021 05.
Article in English | MEDLINE | ID: mdl-33565608

ABSTRACT

Disturbance and foundation species can both have strong impacts on ecosystem structure and function, but studies of their interacting effects are hindered by the long life spans and slow growth of most foundation species. Here, we investigated the extent to which foundation species may mediate the impacts of disturbance on ecological communities, using the kelp forest ecosystem as a study system. Giant kelp (Macrocystis pyrifera) grows rapidly and experiences wave disturbance from winter storms. We developed and analyzed a model of the effects of variable storm regimes on giant kelp population dynamics and of the cascading effects on kelp-mediated competition between benthic community members in kelp forests. Simulations of severe storm regimes resulted in a greater abundance of understory macroalgae and a lower abundance of sessile invertebrates than did milder regimes. Both the cascading effects of periodic loss of giant kelp as well as the degree to which storms directly impacted the benthos (in the form of scouring) influenced the outcome of competition between benthic community members. The model's qualitative predictions were consistent with empirical data from a 20-yr time series of community dynamics, suggesting that interannual variability in disturbance that affects giant kelp abundance can have strong consequences for benthic community structure. Our findings point to the value of long-term studies in elucidating the interacting effects of disturbance and foundation species.


Subject(s)
Kelp , Macrocystis , Animals , Ecosystem , Forests , Invertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...