Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834764

ABSTRACT

The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, eventually, commercialization. Affinity chromatography (AC) can be used to simplify purification processes and generate clinical-grade products with high titer and purity. However, one of the major challenges in the purification of Lentiviral vectors (LVs) using AC is to combine a highly specific ligand with a gentle elution condition assuring the preservation of vector biological activity. In this work, we report for the first time the implementation of an AC resin to specifically purify VSV-G pseudotyped LVs. After ligand screening, different critical process parameters were assessed and optimized. A dynamic capacity of 1 × 1011 total particles per mL of resin was determined and an average recovery yield of 45% was found for the small-scale purification process. The established AC robustness was confirmed by the performance of an intermediate scale providing an infectious particles yield of 54%, which demonstrates the scalability and reproducibility of the AC matrix. Overall, this work contributes to increasing downstream process efficiency by delivering a purification technology that enables high purity, scalability, and process intensification in a single step, contributing to time-to-market reduction.


Subject(s)
Genetic Vectors , Lentivirus , Lentivirus/genetics , Ligands , Reproducibility of Results , Genetic Therapy/methods
2.
Biotechnol Bioeng ; 119(10): 2784-2793, 2022 10.
Article in English | MEDLINE | ID: mdl-35822551

ABSTRACT

Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.


Subject(s)
Malaria Vaccines , Malaria , Saccharomycetales , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Humans , Malaria/prevention & control , Malaria Vaccines/genetics , Malaria Vaccines/metabolism , Mice , Mice, Inbred BALB C , Pichia/genetics
3.
NPJ Vaccines ; 3: 32, 2018.
Article in English | MEDLINE | ID: mdl-30131879

ABSTRACT

Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called "RH5.1" was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at -80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and "difficult-to-express" recombinant protein-based vaccines.

4.
Int J Parasitol ; 47(7): 435-446, 2017 06.
Article in English | MEDLINE | ID: mdl-28153778

ABSTRACT

Development of bespoke biomanufacturing processes remains a critical bottleneck for translational studies, in particular when modest quantities of a novel product are required for proof-of-concept Phase I/II clinical trials. In these instances the ability to develop a biomanufacturing process quickly and relatively cheaply, without risk to product quality or safety, provides a great advantage by allowing new antigens or concepts in immunogen design to more rapidly enter human testing. These challenges with production and purification are particularly apparent when developing recombinant protein-based vaccines for difficult parasitic diseases, with Plasmodium falciparum malaria being a prime example. To that end, we have previously reported the expression of a novel protein vaccine for malaria using the ExpreS2Drosophila melanogaster Schneider 2 stable cell line system, however, a very low overall process yield (typically <5% recovery of hexa-histidine-tagged protein) meant the initial purification strategy was not suitable for scale-up and clinical biomanufacture of such a vaccine. Here we describe a newly available affinity purification method that was ideally suited to purification of the same protein which encodes the P. falciparum reticulocyte-binding protein homolog 5 - currently the leading antigen for assessment in next generation vaccines aiming to prevent red blood cell invasion by the blood-stage parasite. This purification system makes use of a C-terminal tag known as 'C-tag', composed of the four amino acids, glutamic acid - proline - glutamic acid - alanine (E-P-E-A), which is selectively purified on a CaptureSelect™ affinity resin coupled to a camelid single chain antibody, called NbSyn2. The C-terminal fusion of this short C-tag to P. falciparum reticulocyte-binding protein homolog 5 achieved >85% recovery and >70% purity in a single step purification directly from clarified, concentrated Schneider 2 cell supernatant under mild conditions. Biochemical and immunological analysis showed that the C-tagged and hexa-histidine-tagged P. falciparum reticulocyte-binding protein homolog 5 proteins are comparable. The C-tag technology has the potential to form the basis of a current good manufacturing practice-compliant platform, which could greatly improve the speed and ease with which novel protein-based products progress to clinical testing.


Subject(s)
Carrier Proteins/chemistry , Malaria Vaccines/immunology , Plasmodium falciparum/metabolism , Animals , Carrier Proteins/immunology , Carrier Proteins/metabolism , Cell Line , Cloning, Molecular , Rabbits
5.
Methods Mol Biol ; 1131: 297-314, 2014.
Article in English | MEDLINE | ID: mdl-24515474

ABSTRACT

Ever since the introduction of bacterial derived surface proteins like protein A that demonstrate a natural binding reactivity towards antibodies, affinity chromatography has evolved into a well-established technology for the purification of antibodies and antibody fragments. Although high selectivity is provided by these types of affinity ligands, not all antibodies or antibody fragments are covered, which then forces the use of non-affinity-based processes that are less selective and often result in lower one-step purity and yield. To fill these gaps, we here describe a novel range of CaptureSelect(™) affinity resins that enables immunoaffinity chromatography for a much broader range of antibody targets.


Subject(s)
Antibodies/isolation & purification , Immunoglobulin Fragments/isolation & purification , Chromatography, Affinity
6.
Brain ; 135(Pt 4): 1081-101, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22396395

ABSTRACT

Myasthenia gravis is a paralytic disorder with autoantibodies against acetylcholine receptors at the neuromuscular junction. A proportion of patients instead has antibodies against muscle-specific kinase, a protein essential for acetylcholine receptor clustering. These are generally of the immunoglobulin-G4 subclass and correlate with disease severity, suggesting specific myasthenogenic activity. However, immunoglobulin-G4 subclass antibodies are generally considered to be 'benign' and direct proof for their pathogenicity in muscle-specific kinase myasthenia gravis (or other immunoglobulin-G4-associated disorders) is lacking. Furthermore, the exact electrophysiological synaptic defects caused at neuromuscular junctions by human anti-muscle-specific kinase autoantibodies are hitherto unknown. We show that purified immunoglobulin-G4, but not immunoglobulin-G1-3, from patients with muscle-specific kinase myasthenia gravis binds to mouse neuromuscular junctions in vitro, and that injection into immunodeficient mice causes paralysis. Injected immunoglobulin-G4 caused reduced density and fragmented area of neuromuscular junction acetylcholine receptors. Detailed electrophysiological synaptic analyses revealed severe reduction of postsynaptic acetylcholine sensitivity, and exaggerated depression of presynaptic acetylcholine release during high-rate activity, together causing the (fatigable) muscle weakness. Intriguingly, compensatory transmitter release upregulation, which is the normal homeostatic response in acetylcholine receptor myasthenia gravis, was absent. This conveys extra vulnerability to neurotransmission at muscle-specific kinase myasthenia gravis neuromuscular junctions. Thus, we demonstrate that patient anti-muscle-specific kinase immunoglobulin-G4 is myasthenogenic, independent of additional immune system components, and have elucidated the underlying electrophysiological neuromuscular junction abnormalities.


Subject(s)
Immunoglobulin G/adverse effects , Immunoglobulin G/blood , Myasthenia Gravis/blood , Neuromuscular Junction Diseases/complications , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Cholinergic/immunology , Action Potentials/drug effects , Adult , Animals , Autoantibodies/blood , Disease Models, Animal , Electromyography , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Microscopy, Electron, Transmission , Middle Aged , Motor Endplate/drug effects , Motor Endplate/physiopathology , Muscle Contraction/drug effects , Muscle Strength/drug effects , Muscle Strength/physiology , Myasthenia Gravis/complications , Myasthenia Gravis/immunology , Myasthenia Gravis/therapy , Neural Conduction/drug effects , Neural Conduction/physiology , Neuromuscular Junction/drug effects , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Neuromuscular Junction/ultrastructure , Neuromuscular Junction Diseases/pathology , Plasmapheresis/methods , Young Adult
7.
Shock ; 34(2): 125-32, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20016410

ABSTRACT

Staphylococcus aureus produces the superantigen toxic shock syndrome toxin 1 (TSST-1). When the bacterium invades the human circulation, this toxin can induce life-threatening gram-positive sepsis. Current sepsis treatment does not remove bacterial toxins. Variable domains of llama heavy-chain antibodies (VHH) against toxic shock syndrome toxin 1 ([alpha]-TSST-1 VHH) were previously found to be effective in vitro. We hypothesized that removing TSST-1 with [alpha]-TSST-1 VHH hemofiltration filters would ameliorate experimental sepsis in pigs. After assessing in vitro whether timely removing TSST-1 interrupted TSST-1-induced mononuclear cell TNF-[alpha] production, VHH-coated filters were applied in a porcine sepsis model. Clinical course, survival, plasma interferon [gamma], and TSST-1 levels were similar with and without VHH-coated filters as were TSST-1 concentrations before and after the VHH filter. Plasma TSST-1 levels were much lower than anticipated from the distribution of the amount of infused TSST-1, suggesting compartmentalization to space or adhesion to surface not accessible to hemofiltration or pheresis techniques. Removing TSST-1 from plasma was feasible in vitro. However, the [alpha]-TSST-1 VHH adsorption filter-based technique was ineffective in vivo, indicating that improvement of VHH-based hemofiltration is required. Sequestration likely prevented the adequate removal of TSST-1. The latter warrants further investigation of TSST-1 distribution and clearance in vivo.


Subject(s)
Immunoglobulin Heavy Chains/therapeutic use , Peptide Fragments/therapeutic use , Shock, Septic/prevention & control , Animals , Bacterial Toxins , Camelids, New World/immunology , Cells, Cultured , Enterotoxins , Female , Hemofiltration/methods , Humans , Leukocytes, Mononuclear/metabolism , Shock, Septic/immunology , Superantigens , Sus scrofa
8.
Biotechnol Bioeng ; 104(1): 143-51, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19475676

ABSTRACT

Toxic-shock syndrome is primarily caused by the Toxic-shock syndrome toxin 1 (TSST-1), which is secreted by the Gram-positive bacterium Staphylococcus aureus. The toxin belongs to a family of superantigens (SAgs) which exhibit several shared biological properties, including the induction of massive cytokine release and V(beta)-specific T-cell proliferation. In this study we explored the possibility to use monoclonal Variable domains of Llama Heavy-chain antibodies (VHH) in the immuno capturing of TSST-1 from plasma. Data is presented that the selected VHHs are highly specific for TSST-1 and can be efficiently produced in large amounts in yeast. In view of affinity chromatography, the VHHs are easily coupled to beads, and are able to deplete TSST-1 from plasma at very low, for example, pathologically relevant, concentrations. When spiked with 4 ng/mL TSST-1 more than 96% of TSST-1 was depleted from pig plasma. These data pave the way to further explore application of high-affinity columns in the specific immuno depletion of SAgs in experimental sepsis models and in sepsis in humans.


Subject(s)
Antigens, Bacterial/isolation & purification , Bacterial Toxins/isolation & purification , Chromatography, Affinity/methods , Enterotoxins/isolation & purification , Plasma/chemistry , Staphylococcus aureus/pathogenicity , Superantigens/isolation & purification , Animals , Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Camelids, New World , Enterotoxins/immunology , Enterotoxins/metabolism , Humans , Protein Binding , Sensitivity and Specificity , Superantigens/immunology
9.
J Immunol Methods ; 324(1-2): 1-12, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17570391

ABSTRACT

Large scale, highly specific purification of valuable proteins from blood and removal of undesirable components promise to have wide therapeutic applications. Moreover, depletion of bulk proteins from blood is a prerequisite for clinical proteomics. Here we describe the development of specific, high affinity Camelid antibody fragments (VHH) derived from immune libraries for purification and depletion of the bulk protein HSA and IgG from human serum and plasma for therapeutic and research purposes. The anti-IgG VHH substantially improved depletion of IgGs from blood over the classical method based on protein A. To demonstrate the improved performance of VHH based IgG depletion, we analyzed the presence of auto-antibodies in human plasma before and after depletion from two groups of patients with auto-immune disease: Goodpasture syndrome (GP) and systemic lupus erythematosus (SLE). VHHs can be produced efficiently and cost effectively in Saccharomyces cerevisiae, a genetically regarded as safe (GRAS) microorganism. A good manufacturing process (GMP) for purification of these VHHs has also been developed. Moreover, as VHHs are single protein chains, they can be coupled relatively easily to solid matrices. These three factors are important for developing affinity purification medication.


Subject(s)
Affinity Labels , Antibodies, Anti-Idiotypic/metabolism , Chromatography, Affinity , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/metabolism , Serum Albumin/immunology , Serum Albumin/metabolism , Animals , Antibody Specificity , Binding Sites, Antibody , Camelids, New World , Humans , Ligands , Protein Binding
10.
Clin Vaccine Immunol ; 13(10): 1079-86, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16928888

ABSTRACT

Sepsis is a considerable health problem and a burden on the health care system. Endotoxin, or lipopolysaccharide (LPS), present in the outer membrane of gram-negative bacteria, is responsible for more than 50% of the sepsis cases and is, therefore, a legitimate target for therapeutic approaches against sepsis. In this study, we selected and characterized a llama single-chain antibody fragment (VHH) directed to Neisseria meningitidis LPS. The VHH, designated VHH 5G, showed affinity to purified LPS as well as to LPS on the surfaces of the bacteria. Epitope mapping using a panel of N. meningitidis mutants revealed that VHH 5G recognizes an epitope in the inner core of LPS, and as expected, the VHH proved to have broad specificity for LPS from different bacteria. Furthermore, this VHH blocked binding of LPS to target cells of the immune system, resulting in the inhibition of LPS signaling in whole blood. Moreover, it was found to remove LPS efficiently from aqueous solutions, including serum. The selected anti-LPS VHH is a leading candidate for therapies against LPS-mediated sepsis.


Subject(s)
Camelids, New World/immunology , Immunoglobulin Fab Fragments/physiology , Immunoglobulin Fab Fragments/therapeutic use , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/immunology , Signal Transduction/immunology , Animals , Binding Sites, Antibody , Binding, Competitive/immunology , Cells, Cultured , Escherichia coli/immunology , Humans , Immunoglobulin Fab Fragments/metabolism , Neisseria meningitidis/immunology , Protein Binding/immunology
11.
J Biol Chem ; 281(20): 14207-14, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16551622

ABSTRACT

Excessive water uptake through Aquaporins (AQP) can be life-threatening and reversible AQP inhibitors are needed. Here, we determined the specificity, potency, and binding site of tetraethylammonium (TEA) to block Aquaporin water permeability. Using oocytes, externally applied TEA blocked AQP1/AQP2/AQP4 with IC50 values of 1.4, 6.2, and 9.8 microM, respectively. Related tetraammonium compounds yielded some (propyl) or no (methyl, butyl, or pentyl) inhibition. TEA inhibition was lost upon a Tyr to Phe amino acid switch in the external water pore of AQP1/AQP2/AQP4, whereas the water permeability of AQP3 and AQP5, which lack a corresponding Tyr, was not blocked by TEA. Consistent with experimental data, multi-nanosecond molecular dynamics simulations showed one stable binding site for TEA, but not tetramethyl (TMA), in AQP1, resulting in a nearly 50% water permeability inhibition, which was reduced in AQP1-Y186F due to effects on the TEA inhibitory binding region. Moreover, in the simulation TEA interacted with charged residues in the C (Asp128) and E (Asp185) loop, and the A(Tyr37-Asn42-Thr44) loop of the neighboring monomer, but not directly with Tyr186. The loss of TEA inhibition in oocytes expressing properly folded AQP1-N42A or -T44A is in line with the computationally predicted binding mode. Our data reveal that the molecular interaction of TEA with AQP1 differs and is about 1000-fold more effective on AQPs than on potassium channels. Moreover, the observed experimental and simulated similarities open the way for rational design and virtual screening for AQP-specific inhibitors, with quaternary ammonium compounds in general, and TEA in particular as a lead compound.


Subject(s)
Aquaporins/chemistry , Quaternary Ammonium Compounds/chemistry , Amino Acid Sequence , Binding Sites , Inhibitory Concentration 50 , Ion Channels/chemistry , Models, Molecular , Molecular Sequence Data , Permeability , Sequence Homology, Amino Acid , Tetraethylammonium/chemistry , Thermodynamics , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...