Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Patterns (N Y) ; 1(7): 100105, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33205138

ABSTRACT

Heterogeneous and multidisciplinary data generated by research on sustainable global agriculture and agrifood systems requires quality data labeling or annotation in order to be interoperable. As recommended by the FAIR principles, data, labels, and metadata must use controlled vocabularies and ontologies that are popular in the knowledge domain and commonly used by the community. Despite the existence of robust ontologies in the Life Sciences, there is currently no comprehensive full set of ontologies recommended for data annotation across agricultural research disciplines. In this paper, we discuss the added value of the Ontologies Community of Practice (CoP) of the CGIAR Platform for Big Data in Agriculture for harnessing relevant expertise in ontology development and identifying innovative solutions that support quality data annotation. The Ontologies CoP stimulates knowledge sharing among stakeholders, such as researchers, data managers, domain experts, experts in ontology design, and platform development teams.

2.
Nature ; 557(7703): 43-49, 2018 05.
Article in English | MEDLINE | ID: mdl-29695866

ABSTRACT

Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.


Subject(s)
Crops, Agricultural/classification , Crops, Agricultural/genetics , Genetic Variation , Genome, Plant/genetics , Oryza/classification , Oryza/genetics , Asia , Evolution, Molecular , Genes, Plant/genetics , Genetics, Population , Genomics , Haplotypes , INDEL Mutation/genetics , Phylogeny , Plant Breeding , Polymorphism, Single Nucleotide/genetics
3.
Rice (N Y) ; 10(1): 8, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28321828

ABSTRACT

BACKGROUND: A range of resistance loci against different races of Xanthomonas oryzae pv. oryzae (Xoo), the pathogen causing bacterial blight (BB) disease of rice, have been discovered and characterized. Several have been deployed in modern varieties, however, due to rapid evolution of Xoo, a number have already become ineffective. The continuous "arms race" between Xoo and rice makes it imperative to discover new resistance loci to enable durable deployment of multiple resistance genes in modern breeding lines. Rice diversity panels can be exploited as reservoirs of useful genetic variation for bacterial blight (BB) resistance. This study was conducted to identify loci associated to BB resistance, new genetic donors and useful molecular markers for marker-assisted breeding. RESULTS: A genome-wide association study (GWAS) of BB resistance using a diverse panel of 285 rice accessions was performed to identify loci that are associated with resistance to nine Xoo strains from the Philippines, representative of eight global races. Single nucleotide polymorphisms (SNPs) associated with differential resistance were identified in the diverse panel and a subset of 198 indica accessions. Strong associations were found for novel SNPs linked with known bacterial blight resistance Xa genes, from which high utility markers for tracking and selection of resistance genes in breeding programs were designed. Furthermore, significant associations of SNPs in chromosomes 6, 9, 11, and 12 did not overlap with known resistance loci and hence might prove to be novel sources of resistance. Detailed analysis revealed haplotypes that correlated with resistance and analysis of putative resistance alleles identified resistant genotypes as potential donors of new resistance genes. CONCLUSIONS: The results of the GWAS validated known genes underlying resistance and identified novel loci that provide useful targets for further investigation. SNP markers and genetic donors identified in this study will help plant breeders in improving and diversifying resistance to BB.

4.
Int J Plant Genomics ; 2008: 369601, 2008.
Article in English | MEDLINE | ID: mdl-18483570

ABSTRACT

The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making.

SELECTION OF CITATIONS
SEARCH DETAIL
...