Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
medRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853910

ABSTRACT

Background and Significance: Positron Emission Tomography (PET) using fluorodeoxyglucose (FDG-PET) is a standard imaging modality for detecting areas of hypometabolism associated with the seizure onset zone (SOZ) in temporal lobe epilepsy (TLE). However, FDG-PET is costly and involves the use of a radioactive tracer. Arterial Spin Labeling (ASL) offers an MRI-based quantification of cerebral blood flow (CBF) that could also help localize the SOZ, but its performance in doing so, relative to FDG-PET, is limited. In this study, we seek to improve ASL's diagnostic performance by developing a deep learning framework for synthesizing FDG-PET-like images from ASL and structural MRI inputs. Methods: We included 68 epilepsy patients, out of which 36 had well lateralized TLE. We compared the coupling between FDG-PET and ASL CBF values in different brain regions, as well as the asymmetry of these values across the brain. We additionally assessed each modality's ability to lateralize the SOZ across brain regions. Using our paired PET-ASL data, we developed FlowGAN, a generative adversarial neural network (GAN) that synthesizes PET-like images from ASL and T1-weighted MRI inputs. We tested our synthetic PET images against the actual PET images of subjects to assess their ability to reproduce clinically meaningful hypometabolism and asymmetries in TLE. Results: We found variable coupling between PET and ASL CBF values across brain regions. PET and ASL had high coupling in neocortical temporal and frontal brain regions (Spearman's r > 0.30, p < 0.05) but low coupling in mesial temporal structures (Spearman's r < 0.30, p > 0.05). Both whole brain PET and ASL CBF asymmetry values provided good separability between left and right TLE subjects, but PET (AUC = 0.96, 95% CI: [0.88, 1.00]) outperformed ASL (AUC = 0.81; 95% CI: [0.65, 0.96]). FlowGAN-generated images demonstrated high structural similarity to actual PET images (SSIM = 0.85). Globally, asymmetry values were better correlated between synthetic PET and original PET than between ASL CBF and original PET, with a mean correlation increase of 0.15 (95% CI: [0.07, 0.24], p<0.001, Cohen's d = 0.91). Furthermore, regions that had poor ASL-PET correlation (e.g. mesial temporal structures) showed the greatest improvement with synthetic PET images. Conclusions: FlowGAN improves ASL's diagnostic performance, generating synthetic PET images that closely mimic actual FDG-PET in depicting hypometabolism associated with TLE. This approach could improve non-invasive SOZ localization, offering a promising tool for epilepsy presurgical assessment. It potentially broadens the applicability of ASL in clinical practice and could reduce reliance on FDG-PET for epilepsy and other neurological disorders.

2.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826413

ABSTRACT

Background: Volumetry of subregions in the medial temporal lobe (MTL) computed from automatic segmentation in MRI can track neurodegeneration in Alzheimer's disease. However, image quality may vary in MRI. Poor quality MR images can lead to unreliable segmentation of MTL subregions. Considering that different MRI contrast mechanisms and field strengths (jointly referred to as "modalities" here) offer distinct advantages in imaging different parts of the MTL, we developed a muti-modality segmentation model using both 7 tesla (7T) and 3 tesla (3T) structural MRI to obtain robust segmentation in poor-quality images. Method: MRI modalities including 3T T1-weighted, 3T T2-weighted, 7T T1-weighted and 7T T2-weighted (7T-T2w) of 197 participants were collected from a longitudinal aging study at the Penn Alzheimer's Disease Research Center. Among them, 7T-T2w was used as the primary modality, and all other modalities were rigidly registered to the 7T-T2w. A model derived from nnU-Net took these registered modalities as input and outputted subregion segmentation in 7T-T2w space. 7T-T2w images most of which had high quality from 25 selected training participants were manually segmented to train the multi-modality model. Modality augmentation, which randomly replaced certain modalities with Gaussian noise, was applied during training to guide the model to extract information from all modalities. To compare our proposed model with a baseline single-modality model in the full dataset with mixed high/poor image quality, we evaluated the ability of derived volume/thickness measures to discriminate Amyloid+ mild cognitive impairment (A+MCI) and Amyloid- cognitively unimpaired (A-CU) groups, as well as the stability of these measurements in longitudinal data. Results: The multi-modality model delivered good performance regardless of 7T-T2w quality, while the single-modality model under-segmented subregions in poor-quality images. The multi-modality model generally demonstrated stronger discrimination of A+MCI versus A-CU. Intra-class correlation and Bland-Altman plots demonstrate that the multi-modality model had higher longitudinal segmentation consistency in all subregions while the single-modality model had low consistency in poor-quality images. Conclusion: The multi-modality MRI segmentation model provides an improved biomarker for neurodegeneration in the MTL that is robust to image quality. It also provides a framework for other studies which may benefit from multimodal imaging.

3.
Nat Commun ; 15(1): 4803, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839876

ABSTRACT

Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer's Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Neurofibrillary Tangles , Temporal Lobe , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/metabolism , Temporal Lobe/pathology , tau Proteins/metabolism , Male , Female , Aged , Magnetic Resonance Imaging/methods , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Aged, 80 and over , Autopsy , Neuroimaging/methods , Middle Aged , Postmortem Imaging
4.
Alzheimers Dement ; 20(6): 4147-4158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747539

ABSTRACT

INTRODUCTION: Typical MRI measures of neurodegeneration have limited sensitivity in early disease stages. Diffusion MRI (dMRI) microstructural measures may allow for detection in preclinical stages. METHODS: Participants had dMRI and either beta-amyloid PET or plasma biomarkers of Alzheimer's pathology within 18 months of MRI. Microstructure was measured in portions of the medial temporal lobe (MTL) with high neurofibrillary tangle (NFT) burden based on a previously developed post mortem 3D-map. Regressions examined relationships between microstructure and markers of Alzheimer's pathology in preclinical disease and then across disease stages. RESULTS: There was higher isometric volume fraction in amyloid-positive compared to amyloid-negative cognitively unimpaired individuals in high tangle MTL regions. Similarly, plasma biomarkers and 18F-flortaucipir were associated with microstructural changes in preclinical disease. Additional microstructural effects were seen across disease stages. DISCUSSION: Combining a post mortem atlas of NFT pathology with microstructural measures allows for detection of neurodegeneration in preclinical Alzheimer's disease. Highlights Typical markers of neurodegeneration are not sensitive in preclinical Alzheimer's. dMRI measured microstructure in regions with high NFT. Microstructural changes occur in medial temporal regions in preclinical disease. Microstructural changes occur in other typical Alzheimer's regions in later stages. Combining post mortem pathology atlases with in vivo MRI is a powerful framework.


Subject(s)
Alzheimer Disease , Biomarkers , Gray Matter , Positron-Emission Tomography , Temporal Lobe , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Temporal Lobe/pathology , Temporal Lobe/diagnostic imaging , Male , Female , Aged , Gray Matter/pathology , Gray Matter/diagnostic imaging , Biomarkers/blood , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , Diffusion Magnetic Resonance Imaging
5.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645183

ABSTRACT

Infant cerebral blood flow (CBF) delivers nutrients and oxygen to fulfill brain energy consumption requirements for the fastest period of postnatal brain development across lifespan. However, organizing principle of whole-brain CBF dynamics during infancy remains obscure. Leveraging a unique cohort of 100+ infants with high-resolution arterial spin labeled MRI, we found the emergence of the cortical hierarchy revealed by highest-resolution infant CBF maps available to date. Infant CBF across cortical regions increased in a biphasic pattern with initial rapid and sequentially slower rate, with break-point ages increasing along the limbic-sensorimotor-association cortical gradient. Increases in CBF in sensorimotor cortices were associated with enhanced language and motor skills, and frontoparietal association cortices for cognitive skills. The study discovered emergence of the hierarchical limbic-sensorimotor-association cortical gradient in infancy, and offers standardized reference of infant brain CBF and insight into the physiological basis of cortical specialization and real-world infant developmental functioning.

6.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594906

ABSTRACT

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Subject(s)
Brain , Cerebrovascular Circulation , Spin Labels , Humans , Brain/diagnostic imaging , Brain/blood supply , Cerebrovascular Circulation/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging
7.
Magn Reson Med ; 92(3): 1277-1289, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38469893

ABSTRACT

PURPOSE: Ultrahigh field (≥7 T) MRI is at the cutting edge of medical imaging, enabling enhanced spatial and spectral resolution as well as enhanced susceptibility contrast. However, transmit ( B 1 + $$ {\mathrm{B}}_1^{+} $$ ) field inhomogeneity due to standing wave effects caused by the shortened RF wavelengths at 7 T is still a challenge to overcome. Novel hardware methods such as dielectric pads have been shown to improve the B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneity but are currently limited in their corrective effect by the range of high-permittivity materials available and have a fixed shelf life. In this work, an optimized metasurface design is presented that demonstrates in vivo enhancement of the B 1 + $$ {\mathrm{B}}_1^{+} $$ field. METHODS: A prototype metasurface was optimized by an empirical capacitor sweep and by varying the period size. Phantom temperature experiments were performed to evaluate potential metasurface heating effects during scanning. Lastly, in vivo gradient echo images and B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were acquired on five healthy subjects on a 7 T system. Dielectric pads were also used as a comparison throughout the work as a standard comparison. RESULTS: The metasurfaces presented here enhanced the average relative SNR of the gradient echo images by a factor of 2.26 compared to the dielectric pads factor of 1.61. Average B 1 + $$ {\mathrm{B}}_1^{+} $$ values reflected a similar enhancement of 27.6% with the metasurfaces present versus 8.9% with the dielectric pads. CONCLUSION: The results demonstrate that metasurfaces provide superior performance to dielectric padding as shown by B 1 + $$ {\mathrm{B}}_1^{+} $$ maps reflecting their direct effects and resulting enhancements in image SNR at 7 T.


Subject(s)
Equipment Design , Magnetic Resonance Imaging , Phantoms, Imaging , Magnetic Resonance Imaging/instrumentation , Humans , Leg/diagnostic imaging , Adult , Image Enhancement/methods , Female , Male , Image Processing, Computer-Assisted/methods , Algorithms , Signal-To-Noise Ratio
8.
J Neurosci Res ; 102(3): e25313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38415989

ABSTRACT

A key function of sleep is to provide a regular period of reduced brain metabolism, which is critical for maintenance of healthy brain function. The purpose of this work was to quantify the sleep-stage-dependent changes in brain energetics in terms of cerebral metabolic rate of oxygen (CMRO2 ) as a function of sleep stage using quantitative magnetic resonance imaging (MRI) with concurrent electroencephalography (EEG) during sleep in the scanner. Twenty-two young and older subjects with regular sleep hygiene and Pittsburgh Sleep Quality Index (PSQI) in the normal range were recruited for the study. Cerebral blood flow (CBF) and venous oxygen saturation (SvO2 ) were obtained simultaneously at 3 Tesla field strength and 2.7-s temporal resolution during an 80-min time series using OxFlow, an in-house developed imaging sequence. The method yields whole-brain CMRO2 in absolute physiologic units via Fick's Principle. Nineteen subjects yielded evaluable data free of subject motion artifacts. Among these subjects, 10 achieved slow-wave (N3) sleep, 16 achieved N2 sleep, and 19 achieved N1 sleep while undergoing the MRI protocol during scanning. Mean CMRO2 was 98 ± 7(µmol min-1 )/100 g awake, declining progressively toward deepest sleep stage: 94 ± 10.8 (N1), 91 ± 11.4 (N2), and 76 ± 9.0 µmol min-1 /100 g (N3), with each level differing significantly from the wake state. The technology described is able to quantify cerebral oxygen metabolism in absolute physiologic units along with non-REM sleep stage, indicating brain oxygen consumption to be closely associated with depth of sleep, with deeper sleep stages exhibiting progressively lower CMRO2 levels.


Subject(s)
Magnetic Resonance Imaging , Sleep Stages , Humans , Sleep , Oxygen , Magnetic Resonance Spectroscopy
9.
J Magn Reson Imaging ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400805

ABSTRACT

BACKGROUND: Arterial spin labeling (ASL) derived cerebral blood flow (CBF) maps are prone to artifacts and noise that can degrade image quality. PURPOSE: To develop an automated and objective quality evaluation index (QEI) for ASL CBF maps. STUDY TYPE: Retrospective. POPULATION: Data from N = 221 adults, including patients with Alzheimer's disease (AD), Parkinson's disease, and traumatic brain injury. FIELD STRENGTH/SEQUENCE: Pulsed or pseudocontinuous ASL acquired at 3 T using non-background suppressed 2D gradient-echo echoplanar imaging or background suppressed 3D spiral spin-echo readouts. ASSESSMENT: The QEI was developed using N = 101 2D CBF maps rated as unacceptable, poor, average, or excellent by two neuroradiologists and validated by 1) leave-one-out cross validation, 2) assessing if CBF reproducibility in N = 53 cognitively normal adults correlates inversely with QEI, 3) if iterative discarding of low QEI data improves the Cohen's d effect size for CBF differences between preclinical AD (N = 27) and controls (N = 53), 4) comparing the QEI with manual ratings for N = 50 3D CBF maps, and 5) comparing the QEI with another automated quality metric. STATISTICAL TESTS: Inter-rater reliability and manual vs. automated QEI were quantified using Pearson's correlation. P < 0.05 was considered significant. RESULTS: The correlation between QEI and manual ratings (R = 0.83, CI: 0.76-0.88) was similar (P = 0.56) to inter-rater correlation (R = 0.81, CI: 0.73-0.87) for the 2D data. CBF reproducibility correlated negatively (R = -0.74, CI: -0.84 to -0.59) with QEI. The effect size comparing patients and controls improved (R = 0.72, CI: 0.59-0.82) as low QEI data was discarded iteratively. The correlation between QEI and manual ratings (R = 0.86, CI: 0.77-0.92) of 3D ASL was similar (P = 0.09) to inter-rater correlation (R = 0.78, CI: 0.64-0.87). The QEI correlated (R = 0.87, CI: 0.77-0.92) significantly better with manual ratings than did an existing approach (R = 0.54, CI: 0.30-0.72). DATA CONCLUSION: Automated QEI performed similarly to manual ratings and can provide scalable ASL quality control. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

10.
Cortex ; 173: 138-149, 2024 04.
Article in English | MEDLINE | ID: mdl-38394974

ABSTRACT

Although behavioral evidence has shown that postural changes influence the ability to localize or detect tactile stimuli, little is known regarding the brain areas that modulate these effects. This 7T functional magnetic resonance imaging (fMRI) study explores the effects of touch of the hand as a function of hand location (right or left side of the body) and hand configuration (open or closed). We predicted that changes in hand configuration would be represented in contralateral primary somatosensory cortex (S1) and the anterior intraparietal area (aIPS), whereas change in position of the hand would be associated with alterations in activation in the superior parietal lobule. Multivoxel pattern analysis and a region of interest approach partially supported our predictions. Decoding accuracy for hand location was above chance level in superior parietal lobule (SPL) and in the anterior intraparietal (aIPS) area; above chance classification of hand configuration was observed in SPL and S1. This evidence confirmed the role of the parietal cortex in postural effects on touch and the possible role of S1 in coding the body form representation of the hand.


Subject(s)
Brain Mapping , Parietal Lobe , Humans , Brain Mapping/methods , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Posture , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Hand , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology
11.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293143

ABSTRACT

Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) contrast relies on gradient echo echo-planar imaging (GE-EPI) to quantify dynamic susceptibility changes associated with the hemodynamic response to neural activity. However, acquiring BOLD fMRI in human olfactory regions is particularly challenging due to their proximity to the sinuses where large susceptibility gradients induce magnetic field distortions. BOLD fMRI of the human olfactory system is further complicated by respiratory artifacts that are highly correlated with event onsets in olfactory tasks. Multi-Echo EPI (ME-EPI) acquires gradient echo data at multiple echo times (TEs) during a single acquisition and can leverage signal evolution over the multiple echo times to enhance BOLD sensitivity and reduce artifactual signal contributions. In the current study, we developed a ME-EPI acquisition protocol for olfactory task-based fMRI and demonstrated significant improvement in BOLD signal sensitivity over conventional single-echo EPI (1E-EPI). The observed improvement arose from both an increase in BOLD signal changes through a T 2 * -weighted echo combination and a reduction in non-BOLD artifacts through the application of the Multi-Echo Independent Components Analysis (ME-ICA) denoising method. This study represents one of the first direct comparisons between 1E-EPI and ME-EPI in high-susceptibility regions and provides compelling evidence in favor of using ME-EPI for future task-based fMRI studies.

12.
Neurobiol Aging ; 135: 79-90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262221

ABSTRACT

We used indirect brain mapping with virtual lesion tractography to test the hypothesis that the extent of white matter tract disconnection due to white matter hyperintensities (WMH) is associated with corresponding tract-specific cognitive performance decrements. To estimate tract disconnection, WMH masks were extracted from FLAIR MRI data of 481 cognitively intact participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used as regions of avoidance for fiber tracking in diffusion MRI data from 50 healthy young participants from the Human Connectome Project. Estimated tract disconnection in the right inferior fronto-occipital fasciculus, right frontal aslant tract, and right superior longitudinal fasciculus mediated the effects of WMH volume on executive function. Estimated tract disconnection in the left uncinate fasciculus mediated the effects of WMH volume on memory and in the right frontal aslant tract on language. In a subset of ADNI control participants with amyloid data, positive status increased the probability of periventricular WMH and moderated the relationship between WMH burden and tract disconnection in executive function performance.


Subject(s)
Alzheimer Disease , Connectome , White Matter , Humans , Alzheimer Disease/pathology , White Matter/pathology , Cognition , Neuroimaging , Magnetic Resonance Imaging/methods
13.
Psychophysiology ; 61(4): e14465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37905305

ABSTRACT

Sleep loss impacts a broad range of brain and cognitive functions. However, how sleep deprivation affects risky decision-making remains inconclusive. This study used functional MRI to examine the impact of one night of total sleep deprivation (TSD) on risky decision-making behavior and the underlying brain responses in healthy adults. In this study, we analyzed data from N = 56 participants in a strictly controlled 5-day and 4-night in-laboratory study using a modified Balloon Analogue Risk Task. Participants completed two scan sessions in counter-balanced order, including one scan during rested wakefulness (RW) and another scan after one night of TSD. Results showed no differences in participants' risk-taking propensity and risk-induced activation between RW and TSD. However, participants showed significantly reduced neural activity in the anterior cingulate cortex and bilateral insula for loss outcomes, and in bilateral putamen for win outcomes during TSD compared with RW. Moreover, risk-induced activation in the insula negatively correlated with participants' risk-taking propensity during RW, while no such correlations were observed after TSD. These findings suggest that sleep loss may impact risky decision-making by attenuating neural responses to decision outcomes and impairing brain-behavior associations.


Subject(s)
Decision Making , Sleep Deprivation , Adult , Humans , Decision Making/physiology , Brain , Cognition , Gyrus Cinguli , Magnetic Resonance Imaging , Risk-Taking
14.
Biol Psychiatry ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37981178

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated neurological disorder, and up to 50% of patients experience depression. We investigated how white matter network disruption is related to depression in MS. METHODS: Using electronic health records, 380 participants with MS were identified. Depressed individuals (MS+Depression group; n = 232) included persons who had an ICD-10 depression diagnosis, had a prescription for antidepressant medication, or screened positive via Patient Health Questionnaire (PHQ)-2 or PHQ-9. Age- and sex-matched nondepressed individuals with MS (MS-Depression group; n = 148) included persons who had no prior depression diagnosis, had no psychiatric medication prescriptions, and were asymptomatic on PHQ-2 or PHQ-9. Research-quality 3T structural magnetic resonance imaging was obtained as part of routine care. We first evaluated whether lesions were preferentially located within the depression network compared with other brain regions. Next, we examined if MS+Depression patients had greater lesion burden and if this was driven by lesions in the depression network. Primary outcome measures were the burden of lesions (e.g., impacted fascicles) within a network and across the brain. RESULTS: MS lesions preferentially affected fascicles within versus outside the depression network (ß = 0.09, 95% CI = 0.08 to 0.10, p < .001). MS+Depression patients had more lesion burden (ß = 0.06, 95% CI = 0.01 to 0.10, p = .015); this was driven by lesions within the depression network (ß = 0.02, 95% CI = 0.003 to 0.040, p = .020). CONCLUSIONS: We demonstrated that lesion location and burden may contribute to depression comorbidity in MS. MS lesions disproportionately impacted fascicles in the depression network. MS+Depression patients had more disease than MS-Depression patients, which was driven by disease within the depression network. Future studies relating lesion location to personalized depression interventions are warranted.

15.
J Neurointerv Surg ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898551

ABSTRACT

BACKGROUND: Endovascular therapy (EVT) has revolutionized the treatment of acute stroke, but large vessel recanalization does not always result in tissue-level reperfusion. Cerebral blood flow (CBF) is not routinely monitored during EVT. We aimed to leverage diffuse correlation spectroscopy (DCS), a novel transcranial optical imaging technique, to assess the relationship between microvascular CBF and post-EVT outcomes. METHODS: Frontal lobe CBF was monitored by DCS in 40 patients undergoing EVT. Baseline CBF deficit was calculated as the percentage of CBF impairment on pre-EVT CT perfusion. Microvascular reperfusion was calculated as the percentage increase in DCS-derived CBF that occurred with recanalization. The adequacy of reperfusion was defined by persistent CBF deficit, calculated as: baseline CBF deficit - microvascular reperfusion. A good functional outcome was defined as 90-day modified Rankin Scale score ≤2. RESULTS: Thirty-six of 40 patients achieved successful recanalization, in whom microvascular reperfusion in itself was not associated with infarct volume or functional outcome. However, patients with good functional outcomes had a smaller persistent CBF deficit (median 1% (IQR -11%-16%)) than patients with poor outcomes (median 28% (IQR 2-50%)) (p=0.02). Smaller persistent CBF deficit was also associated with smaller infarct volume (p=0.004). Multivariate models confirmed that persistent CBF deficit was independently associated with infarct volume and functional outcome. CONCLUSIONS: CBF augmentation alone does not predict post-EVT outcomes, but when microvascular reperfusion closely matches the baseline CBF deficit, patients experience favorable clinical and radiographic outcomes. By recognizing inadequate reperfusion, bedside CBF monitoring may provide opportunities to personalize post-EVT care aimed at CBF optimization.

16.
Front Aging Neurosci ; 15: 1266859, 2023.
Article in English | MEDLINE | ID: mdl-37876875

ABSTRACT

Non-invasive methods of detecting early-stage Alzheimer's disease (AD) can provide valuable insight into disease pathology, improving the diagnosis and treatment of AD. Nuclear Overhauser enhancement (NOE) MRI is a technique that provides image contrast sensitive to lipid and protein content in the brain. These macromolecules have been shown to be altered in Alzheimer's pathology, with early disruptions in cell membrane integrity and signaling pathways leading to the buildup of amyloid-beta plaques and neurofibrillary tangles. We used template-based analyzes of NOE MRI data and the characteristic Z-spectrum, with parameters optimized for increase specificity to NOE, to detect changes in lipids and proteins in an AD mouse model that recapitulates features of human AD. We find changes in NOE contrast in the hippocampus, hypothalamus, entorhinal cortex, and fimbria, with these changes likely attributed to disruptions in the phospholipid bilayer of cell membranes in both gray and white matter regions. This study suggests that NOE MRI may be a useful tool for monitoring early-stage changes in lipid-mediated metabolism in AD and other disorders with high spatial resolution.

17.
Front Aging Neurosci ; 15: 1237198, 2023.
Article in English | MEDLINE | ID: mdl-37719871

ABSTRACT

Objective: White matter hyperintensities (WMH) are commonly seen on T2-weighted magnetic resonance imaging (MRI) in older adults and are associated with an increased risk of cognitive decline and dementia. This study aims to estimate changes in the structural connectome due to age-related WMH by using a virtual lesion approach. Methods: High-quality diffusion-weighted imaging data of 30 healthy subjects were obtained from the Human Connectome Project (HCP) database. Diffusion tractography using q-space diffeomorphic reconstruction (QSDR) and whole brain fiber tracking with 107 seed points was conducted using diffusion spectrum imaging studio and the brainnetome atlas was used to parcellate a total of 246 cortical and subcortical nodes. Previously published WMH frequency maps across age ranges (50's, 60's, 70's, and 80's) were used to generate virtual lesion masks for each decade at three lesion frequency thresholds, and these virtual lesion masks were applied as regions of avoidance (ROA) in fiber tracking to estimate connectivity changes. Connections showing significant differences in fiber density with and without ROA were identified using paired tests with False Discovery Rate (FDR) correction. Results: Disconnections appeared first from the striatum to middle frontal gyrus (MFG) in the 50's, then from the thalamus to MFG in the 60's and extending to the superior frontal gyrus in the 70's, and ultimately including much more widespread cortical and hippocampal nodes in the 80's. Conclusion: Changes in the structural disconnectome due to age-related WMH can be estimated using the virtual lesion approach. The observed disconnections may contribute to the cognitive and sensorimotor deficits seen in aging.

18.
Brain Commun ; 5(5): fcad245, 2023.
Article in English | MEDLINE | ID: mdl-37767219

ABSTRACT

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.

19.
J Affect Disord ; 340: 412-419, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37553017

ABSTRACT

BACKGROUND: Numerous studies summarized in a recent meta-analysis have shown sleep deprivation rapidly improves depressive symptoms in approximately 50 % of individuals with major depressive disorder (MDD), however those studies were typically conducted in clinical settings. Here we investigated the effects of sleep deprivation utilizing a highly controlled experimental approach. METHODS: 36 antidepressant-free individuals with MDD and 10 healthy controls (HC) completed a 5 day/4-night protocol consisting of adaptation, baseline, total sleep deprivation (TSD), and recovery phases. Light was kept consistently dim (≤50 lx), meals were regulated, and activity was restricted. In-the-moment mood was assessed using a modified Hamilton Rating Scale for Depression (HRSD) at screening and each morning following the experimental nights. RESULTS: Day of study had a significant effect on mood in both groups. Post-hoc analyses revealed that significant effects were attributed to mood improvement in the MDD group following study initiation prior to beginning TSD, and in the HC group following recovery sleep, but were not due to mood improvement in the MDD group during TSD. No further improvement in mood occurred during 36 h of TSD. LIMITATIONS: Strict eligibility requirements may limit generalizability. The requirement to be medication free may have biased toward a less severely depressed sample. CONCLUSIONS: Results revealed that individuals with moderate MDD can experience a significant reduction in depressive symptoms upon entering a highly controlled laboratory environment. Environmental effects on mood can be substantial and need to be considered.


Subject(s)
Depressive Disorder, Major , Sleep Deprivation , Humans , Sleep Deprivation/drug therapy , Depressive Disorder, Major/drug therapy , Sleep , Antidepressive Agents/therapeutic use , Affect
20.
medRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398183

ABSTRACT

Importance: Multiple sclerosis (MS) is an immune-mediated neurological disorder that affects nearly one million people in the United States. Up to 50% of patients with MS experience depression. Objective: To investigate how white matter network disruption is related to depression in MS. Design: Retrospective case-control study of participants who received research-quality 3-tesla neuroimaging as part of MS clinical care from 2010-2018. Analyses were performed from May 1 to September 30, 2022. Setting: Single-center academic medical specialty MS clinic. Participants: Participants with MS were identified via the electronic health record (EHR). All participants were diagnosed by an MS specialist and completed research-quality MRI at 3T. After excluding participants with poor image quality, 783 were included. Inclusion in the depression group (MS+Depression) required either: 1) ICD-10 depression diagnosis (F32-F34.*); 2) prescription of antidepressant medication; or 3) screening positive via Patient Health Questionnaire-2 (PHQ-2) or -9 (PHQ-9). Age- and sex-matched nondepressed comparators (MS-Depression) included persons with no depression diagnosis, no psychiatric medications, and were asymptomatic on PHQ-2/9. Exposure: Depression diagnosis. Main Outcomes and Measures: We first evaluated if lesions were preferentially located within the depression network compared to other brain regions. Next, we examined if MS+Depression patients had greater lesion burden, and if this was driven by lesions specifically in the depression network. Outcome measures were the burden of lesions (e.g., impacted fascicles) within a network and across the brain. Secondary measures included between-diagnosis lesion burden, stratified by brain network. Linear mixed-effects models were employed. Results: Three hundred-eighty participants met inclusion criteria, (232 MS+Depression: age[SD]=49[12], %females=86; 148 MS-Depression: age[SD]=47[13], %females=79). MS lesions preferentially affected fascicles within versus outside the depression network (ß=0.09, 95% CI=0.08-0.10, P<0.001). MS+Depression had more white matter lesion burden (ß=0.06, 95% CI=0.01-0.10, P=0.015); this was driven by lesions within the depression network (ß=0.02, 95% CI 0.003-0.040, P=0.020). Conclusions and Relevance: We provide new evidence supporting a relationship between white matter lesions and depression in MS. MS lesions disproportionately impacted fascicles in the depression network. MS+Depression had more disease than MS-Depression, which was driven by disease within the depression network. Future studies relating lesion location to personalized depression interventions are warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...