Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Genome Announc ; 4(6)2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27811105

ABSTRACT

Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms.

2.
Proc Natl Acad Sci U S A ; 112(21): E2813-9, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25964331

ABSTRACT

Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea.


Subject(s)
Hydrothermal Vents/microbiology , Vibrio/isolation & purification , Vibrio/pathogenicity , Evolution, Molecular , Genome, Bacterial , Humans , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Species Specificity , Vibrio/genetics , Virulence/genetics
3.
Genome Announc ; 3(1)2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25614562

ABSTRACT

We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium's genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

4.
Genome Announc ; 1(6)2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24309743

ABSTRACT

Bacillus thuringiensis is an important microbial insecticide for controlling agricultural pests. We report the finished genome sequence of Bacillus thuringiensis serovar israelensis strain HD-789, which contains genes encoding 7 parasporal crystals consisting of Cry4Aa3, Cry4Ba5 (2 genes), Cry10Aa3, Cry11Aa3, Cry60Ba3, and Cry60Aa3, plus 3 Cyt toxin genes and 1 hemagglutinin gene.

5.
Stand Genomic Sci ; 7(3): 449-68, 2013.
Article in English | MEDLINE | ID: mdl-24019992

ABSTRACT

The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. The T. oshimai JL-2 chromosome and megaplasmids shared little or no synteny with other sequenced Thermus strains. Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics. Both chromosomes encode a complete glycolysis, tricarboxylic acid (TCA) cycle, and pentose phosphate pathway plus glucosidases, glycosidases, proteases, and peptidases, highlighting highly versatile heterotrophic capabilities. Megaplasmids of both strains contained a gene cluster encoding enzymes predicted to catalyze the sequential reduction of nitrate to nitrous oxide; however, the nitrous oxide reductase required for the terminal step in denitrification was absent, consistent with their incomplete denitrification phenotypes. A sox gene cluster was identified in both chromosomes, suggesting a mode of chemolithotrophy. In addition, nrf and psr gene clusters in T. oshmai JL-2 suggest respiratory nitrite ammonification and polysulfide reduction as possible modes of anaerobic respiration.

6.
Genome Announc ; 1(4)2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23969058

ABSTRACT

We describe the complete genome sequence of Burkholderia pseudomallei MSHR305, a clinical isolate taken from a fatal encephalomyelitis case, a rare form of melioidosis. This sequence will be used for comparisons to identify the genes that are involved in neurological cases.

7.
Genome Announc ; 1(4)2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23846272

ABSTRACT

Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils with the ability to infect Elaeagnus angustifolia and Myrica gale.

9.
PLoS One ; 7(11): e48228, 2012.
Article in English | MEDLINE | ID: mdl-23133618

ABSTRACT

In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/genetics , Prophages/genetics , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/genetics , Area Under Curve , DNA/metabolism , Disease Outbreaks , Genetic Variation , Genomics , Genotype , Georgia (Republic) , Humans , Microbial Sensitivity Tests , Phenotype , Plasmids/metabolism , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Virulence , Yersinia pestis/genetics
10.
PLoS One ; 7(5): e37387, 2012.
Article in English | MEDLINE | ID: mdl-22666352

ABSTRACT

BACKGROUND: Single cell genomics (SCG) is a combination of methods whose goal is to decipher the complete genomic sequence from a single cell and has been applied mostly to organisms with smaller genomes, such as bacteria and archaea. Prior single cell studies showed that a significant portion of a genome could be obtained. However, breakages of genomic DNA and amplification bias have made it very challenging to acquire a complete genome with single cells. We investigated an artificial method to induce polyploidy in Bacillus subtilis ATCC 6633 by blocking cell division and have shown that we can significantly improve the performance of genomic sequencing from a single cell. METHODOLOGY/PRINCIPAL FINDINGS: We inhibited the bacterial cytoskeleton protein FtsZ in B.subtilis with an FtsZ-inhibiting compound, PC190723, resulting in larger undivided single cells with multiple copies of its genome. qPCR assays of these larger, sorted cells showed higher DNA content, have less amplification bias, and greater genomic recovery than untreated cells. SIGNIFICANCE: The method presented here shows the potential to obtain a nearly complete genome sequence from a single bacterial cell. With millions of uncultured bacterial species in nature, this method holds tremendous promise to provide insight into the genomic novelty of yet-to-be discovered species, and given the temporary effects of artificial polyploidy coupled with the ability to sort and distinguish differences in cell size and genomic DNA content, may allow recovery of specific organisms in addition to their genomes.


Subject(s)
Bacillus subtilis/cytology , Bacillus subtilis/genetics , Genome, Bacterial/genetics , Genomics/methods , Polyploidy , Single-Cell Analysis/methods , Bacillus subtilis/drug effects , Cell Division/drug effects , Cell Division/genetics , DNA, Bacterial/metabolism , Pyridines/pharmacology , Thiazoles/pharmacology
11.
BMC Genomics ; 12: 570, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22111657

ABSTRACT

BACKGROUND: Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. RESULTS: The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. CONCLUSIONS: Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.


Subject(s)
Comparative Genomic Hybridization , Evolution, Molecular , Gene Transfer, Horizontal , Genes, Bacterial , Pasteurellaceae/genetics , Chromosomes, Bacterial , DNA, Bacterial/genetics
12.
J Bacteriol ; 193(18): 5047-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21868805

ABSTRACT

Nitrosomonas sp. strain AL212 is an obligate chemolithotrophic ammonia-oxidizing bacterium (AOB) that was originally isolated in 1997 by Yuichi Suwa and colleagues. This organism belongs to Nitrosomonas cluster 6A, which is characterized by sensitivity to high ammonia concentrations, higher substrate affinity (lower K(m)), and lower maximum growth rates than strains in Nitrosomonas cluster 7, which includes Nitrosomonas europaea and Nitrosomonas eutropha. Genome-informed studies of this ammonia-sensitive cohort of AOB are needed, as these bacteria are found in freshwater environments, drinking water supplies, wastewater treatment systems, and soils worldwide.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Nitrosomonas/genetics , Sequence Analysis, DNA , Ammonia/metabolism , Chemoautotrophic Growth , Molecular Sequence Data , Nitrosomonas/isolation & purification , Nitrosomonas/metabolism , Oxidation-Reduction , Plasmids
13.
Stand Genomic Sci ; 4(2): 163-72, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21677853

ABSTRACT

Deinococcus maricopensis (Rainey and da Costa 2005) is a member of the genus Deinococcus, which is comprised of 44 validly named species and is located within the deeply branching bacterial phylum Deinococcus-Thermus. Strain LB-34(T) was isolated from a soil sample from the Sonoran Desert in Arizona. Various species of the genus Deinococcus are characterized by extreme radiation resistance, with D. maricopensis being resistant in excess of 10 kGy. Even though the genomes of three Deinococcus species, D. radiodurans, D. geothermalis and D. deserti, have already been published, no special physiological characteristic is currently known that is unique to this group. It is therefore of special interest to analyze the genomes of additional species of the genus Deinococcus to better understand how these species adapted to gamma- or UV ionizing-radiation. The 3,498,530 bp long genome of D. maricopensis with its 3,301 protein-coding and 66 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

14.
Methods Enzymol ; 496: 289-318, 2011.
Article in English | MEDLINE | ID: mdl-21514469

ABSTRACT

While sequencing methods were available in the late 1970s, it was not until the human genome project and a significant influx of funds for such research that this technology became high throughput. The fields of microbiology and microbial ecology, among many others, have been tremendously impacted over the years, to such an extent that the determination of complete microbial genome sequences is now commonplace. Given the lower costs of next-generation sequencing platforms, even small laboratories from around the world will be able to generate millions of base pairs of data, equivalent to entire genomes worth of sequence information. With this prospect just around the corner, it is timely to provide an overview of the genomics process: from sample preparation to some of the analytical methods used to gain functional knowledge from sequence information.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Genomics/methods , Molecular Sequence Annotation/methods , Nitrification/genetics , Nitrogen Cycle/genetics , Sequence Analysis, DNA/methods , Bacteria/metabolism , Nitrosomonas europaea/genetics , Nitrosomonas europaea/metabolism
15.
Appl Environ Microbiol ; 77(5): 1904-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183631

ABSTRACT

We sequenced for the first time the complete neurotoxin gene cluster of a nonproteolytic Clostridium botulinum type F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to other C. botulinum neurotoxin gene clusters, lacked the regulatory botR gene and contained an intergenic is element between its orfX2 and orfX3 genes.


Subject(s)
Clostridium botulinum type F/genetics , Clostridium botulinum/genetics , Genes, Bacterial , Multigene Family , DNA Transposable Elements , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Open Reading Frames , Sequence Analysis, DNA , Transcription Factors/genetics
16.
Proc Natl Acad Sci U S A ; 107(49): 21134-9, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21078967

ABSTRACT

Whether Vibrio mimicus is a variant of Vibrio cholerae or a separate species has been the subject of taxonomic controversy. A genomic analysis was undertaken to resolve the issue. The genomes of V. mimicus MB451, a clinical isolate, and VM223, an environmental isolate, comprise ca. 4,347,971 and 4,313,453 bp and encode 3,802 and 3,290 ORFs, respectively. As in other vibrios, chromosome I (C-I) predominantly contains genes necessary for growth and viability, whereas chromosome II (C-II) bears genes for adaptation to environmental change. C-I harbors many virulence genes, including some not previously reported in V. mimicus, such as mannose-sensitive hemagglutinin (MSHA), and enterotoxigenic hemolysin (HlyA); C-II encodes a variant of Vibrio pathogenicity island 2 (VPI-2), and Vibrio seventh pandemic island II (VSP-II) cluster of genes. Extensive genomic rearrangement in C-II indicates it is a hot spot for evolution and genesis of speciation for the genus Vibrio. The number of virulence regions discovered in this study (VSP-II, MSHA, HlyA, type IV pilin, PilE, and integron integrase, IntI4) with no notable difference in potential virulence genes between clinical and environmental strains suggests these genes also may play a role in the environment and that pathogenic strains may arise in the environment. Significant genome synteny with prototypic pre-seventh pandemic strains of V. cholerae was observed, and the results of phylogenetic analysis support the hypothesis that, in the course of evolution, V. mimicus and V. cholerae diverged from a common ancestor with a prototypic sixth pandemic genomic backbone.


Subject(s)
Genomics/methods , Vibrio mimicus/genetics , Chromosomes, Bacterial , Genes, Bacterial , Genetic Speciation , Genome, Bacterial , Synteny , Vibrio cholerae/genetics
17.
J Bacteriol ; 192(22): 6099-100, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20851897

ABSTRACT

Caldicellulosiruptor obsidiansis OB47(T) (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Gram-Positive Bacteria/genetics , Anaerobiosis , Cellulose/metabolism , Gram-Positive Bacteria/metabolism , Hot Temperature , Hydrolases/genetics , Hydrolases/metabolism , Molecular Sequence Data , Sequence Analysis, DNA
18.
BMC Microbiol ; 10: 154, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20507608

ABSTRACT

BACKGROUND: In recent years genome sequencing has been used to characterize new bacterial species, a method of analysis available as a result of improved methodology and reduced cost. Included in a constantly expanding list of Vibrio species are several that have been reclassified as novel members of the Vibrionaceae. The description of two putative new Vibrio species, Vibrio sp. RC341 and Vibrio sp. RC586 for which we propose the names V. metecus and V. parilis, respectively, previously characterized as non-toxigenic environmental variants of V. cholerae is presented in this study. RESULTS: Based on results of whole-genome average nucleotide identity (ANI), average amino acid identity (AAI), rpoB similarity, MLSA, and phylogenetic analysis, the new species are concluded to be phylogenetically closely related to V. cholerae and V. mimicus. Vibrio sp. RC341 and Vibrio sp. RC586 demonstrate features characteristic of V. cholerae and V. mimicus, respectively, on differential and selective media, but their genomes show a 12 to 15% divergence (88 to 85% ANI and 92 to 91% AAI) compared to the sequences of V. cholerae and V. mimicus genomes (ANI <95% and AAI <96% indicative of separate species). Vibrio sp. RC341 and Vibrio sp. RC586 share 2104 ORFs (59%) and 2058 ORFs (56%) with the published core genome of V. cholerae and 2956 (82%) and 3048 ORFs (84%) with V. mimicus MB-451, respectively. The novel species share 2926 ORFs with each other (81% Vibrio sp. RC341 and 81% Vibrio sp. RC586). Virulence-associated factors and genomic islands of V. cholerae and V. mimicus, including VSP-I and II, were found in these environmental Vibrio spp. CONCLUSIONS: Results of this analysis demonstrate these two environmental vibrios, previously characterized as variant V. cholerae strains, are new species which have evolved from ancestral lineages of the V. cholerae and V. mimicus clade. The presence of conserved integration loci for genomic islands as well as evidence of horizontal gene transfer between these two new species, V. cholerae, and V. mimicus suggests genomic islands and virulence factors are transferred between these species.


Subject(s)
Genome, Bacterial , Genomics , Vibrio/classification , Vibrio/genetics , Bacterial Proteins/genetics , Cluster Analysis , DNA-Directed RNA Polymerases/genetics , Environmental Microbiology , Evolution, Molecular , Gene Transfer, Horizontal , Genomic Islands , Humans , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Synteny , Vibrio/isolation & purification , Virulence Factors/genetics
19.
J Bacteriol ; 192(13): 3524-33, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20348258

ABSTRACT

The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXPhi and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.


Subject(s)
Genome, Bacterial/genetics , Vibrio cholerae O1/genetics , Vibrio cholerae/genetics , Models, Genetic
20.
Environ Microbiol Rep ; 2(1): 208-16, 2010 Feb.
Article in English | MEDLINE | ID: mdl-23766018

ABSTRACT

Vibrio cholerae O1 El Tor BX 330286 was isolated from a water sample in Australia in 1986, 9 years after an indigenous outbreak of cholera occurred in that region. This environmental strain encodes virulence factors highly similar to those of clinical strains, suggesting an ability to cause disease in humans. We demonstrate its high similarity in gene content and genome-wide nucleotide sequence to clinical V. cholerae strains, notably to pre-seventh pandemic O1 El Tor strains isolated in 1910 (V. cholerae NCTC 8457) and 1937 (V. cholerae MAK 757), as well as seventh pandemic strains isolated after 1960 globally. Here we demonstrate that this strain represents a transitory clone with shared characteristics between pre-seventh and seventh pandemic strains of V. cholerae. Interestingly, this strain was isolated 25 years after the beginning of the seventh pandemic, suggesting the environment as a genome reservoir in areas where cholera does not occur in sporadic, endemic or epidemic form.

SELECTION OF CITATIONS
SEARCH DETAIL
...