Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 18(6): 1295-1307, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37207650

ABSTRACT

Signaling is central in cell fate regulation, and relevant information is encoded in its activity over time (i.e., dynamics). However, simultaneous dynamics quantification of several pathways in single mammalian stem cells has not yet been accomplished. Here we generate mouse embryonic stem cell (ESC) lines simultaneously expressing fluorescent reporters for ERK, AKT, and STAT3 signaling activity, which all control pluripotency. We quantify their single-cell dynamics combinations in response to different self-renewal stimuli and find striking heterogeneity for all pathways, some dependent on cell cycle but not pluripotency states, even in ESC populations currently assumed to be highly homogeneous. Pathways are mostly independently regulated, but some context-dependent correlations exist. These quantifications reveal surprising single-cell heterogeneity in the important cell fate control layer of signaling dynamics combinations and raise fundamental questions about the role of signaling in (stem) cell fate control.


Subject(s)
Embryonic Stem Cells , Proto-Oncogene Proteins c-akt , Animals , Mice , Cell Differentiation , Embryonic Stem Cells/metabolism , Mammals/metabolism , Mouse Embryonic Stem Cells/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
2.
Nat Commun ; 13(1): 2999, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637179

ABSTRACT

Liquid handling robots have the potential to automate many procedures in life sciences. However, they are not in widespread use in academic settings, where funding, space and maintenance specialists are usually limiting. In addition, current robots require lengthy programming by specialists and are incompatible with most academic laboratories with constantly changing small-scale projects. Here, we present the Pipetting Helper Imaging Lid (PHIL), an inexpensive, small, open-source personal liquid handling robot. It is designed for inexperienced users, with self-production from cheap commercial and 3D-printable components and custom control software. PHIL successfully automates pipetting (incl. aspiration) for e.g. tissue immunostainings and stimulations of live stem and progenitor cells during time-lapse microscopy using 3D printed peristaltic pumps. PHIL is cheap enough to put a personal pipetting robot within the reach of most labs and enables users without programming skills to easily automate a large range of experiments.


Subject(s)
Biological Science Disciplines , Robotics , Microscopy , Robotics/methods , Software
3.
Blood ; 140(2): 99-111, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35468185

ABSTRACT

Cells can use signaling pathway activity over time (ie, dynamics) to control cell fates. However, little is known about the potential existence and function of signaling dynamics in primary hematopoietic stem and progenitor cells (HSPCs). Here, we use time-lapse imaging and tracking of single murine HSPCs from green fluorescent protein-p65/H2BmCherry reporter mice to quantify their nuclear factor κB (NfκB) activity dynamics in response to tumor necrosis factor α and interleukin 1ß. We find response dynamics to be heterogeneous between individual cells, with cell type-specific dynamics distributions. Transcriptome sequencing of single cells physically isolated after live dynamics quantification shows activation of different target gene programs in cells with different dynamics. Finally, artificial induction of oscillatory NfκB activity causes changes in granulocyte/monocyte progenitor behavior. Thus, HSPC behavior can be influenced by signaling dynamics, which are tightly regulated during hematopoietic differentiation and enable cell type-specific responses to the same signaling inputs.


Subject(s)
Hematopoietic Stem Cells , NF-kappa B , Animals , Blood Cells/metabolism , Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , Mice , NF-kappa B/metabolism , Signal Transduction
4.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34817548

ABSTRACT

Transcription factors (TFs) regulate cell fates, and their expression must be tightly regulated. Autoregulation is assumed to regulate many TFs' own expression to control cell fates. Here, we manipulate and quantify the (auto)regulation of PU.1, a TF controlling hematopoietic stem and progenitor cells (HSPCs), and correlate it to their future fates. We generate transgenic mice allowing both inducible activation of PU.1 and noninvasive quantification of endogenous PU.1 protein expression. The quantified HSPC PU.1 dynamics show that PU.1 up-regulation occurs as a consequence of hematopoietic differentiation independently of direct fast autoregulation. In contrast, inflammatory signaling induces fast PU.1 up-regulation, which does not require PU.1 expression or its binding to its own autoregulatory enhancer. However, the increased PU.1 levels induced by inflammatory signaling cannot be sustained via autoregulation after removal of the signaling stimulus. We conclude that PU.1 overexpression induces HSC differentiation before PU.1 up-regulation, only later generating cell types with intrinsically higher PU.1.


Subject(s)
Cell Differentiation/genetics , Hematopoietic Stem Cells/metabolism , Homeostasis/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Up-Regulation/genetics , Animals , Cells, Cultured , Gene Expression , Male , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence/methods , Proto-Oncogene Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Time-Lapse Imaging/methods , Trans-Activators/metabolism
5.
Blood ; 138(10): 847-857, 2021 09 09.
Article in English | MEDLINE | ID: mdl-33988686

ABSTRACT

How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular-signal-regulated kinase (ERK) pathway over time (ie, dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand in HSCs but SCF, interleukin 3, and granulocyte colony-stimulating factor in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. For example, CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous cytokine- and cell-type-specific ERK signaling dynamics, illustrating their relevance in regulating hematopoietic stem and progenitor (HSPC) cell fates.


Subject(s)
Cell Culture Techniques , Cytokines/pharmacology , Gene Expression Regulation/drug effects , Hematopoietic Stem Cells , Leukocyte Common Antigens/biosynthesis , MAP Kinase Signaling System/drug effects , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Male
6.
Lab Chip ; 20(22): 4246-4254, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33063816

ABSTRACT

Cell fates are controlled by environmental stimuli that rapidly change the activity of intracellular signaling. Studying these processes requires rapid manipulations of micro-environmental conditions while continuously observing single cells over long periods of time. Current microfluidic devices are unable to simultaneously i) efficiently capture and concentrate rare cells, ii) conduct automated rapid media exchanges via diffusion without displacing non-adherent cells, and iii) allow sensitive high-throughput long-term time-lapse microscopy. Hematopoietic stem and progenitor cells pose a particular challenge for these types of experiments as they are impossible to obtain in very large numbers and are displaced by the fluid flow usually used to change culture media, thus preventing cell tracking. Here, we developed a programmable automated system composed of a novel microfluidic device for efficient capture of rare cells in independently addressable culture chambers, a custom incubation system, and user-friendly control software. The chip's culture chambers are optimized for efficient and sensitive fluorescence microscopy and their media can be individually and quickly changed by diffusion without non-adherent cell displacement. The chip allows efficient capture, stimulation, and sensitive high-frequency time-lapse observation of rare and sensitive murine and human primary hematopoietic stem cells. Our 3D-printed humidification and incubation system minimizes gas consumption, facilitates chip setup, and maintains stable humidity and gas composition during long-term cell culture. This approach now enables the required continuous long-term single-cell quantification of rare non-adherent cells with rapid environmental manipulations, e.g. of rapid signaling dynamics and the later stem cell fate choices they control.


Subject(s)
Cell Culture Techniques , Microfluidics , Animals , Cell Tracking , Humans , Lab-On-A-Chip Devices , Mice , Stem Cells
7.
Anal Chem ; 90(18): 10695-10700, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30059208

ABSTRACT

Dynamic environments determine cell fate decisions and function. Understanding the relationship between extrinsic signals on cellular responses and cell fate requires the ability to dynamically change environmental inputs in vitro, while continuously observing individual cells over extended periods of time. This is challenging for nonadherent cells, such as hematopoietic stem and progenitor cells, because media flow displaces and disturbs such cells, preventing culture and tracking of single cells. Here, we present a programmable microfluidic system designed for the long-term culture and time-lapse imaging of nonadherent cells in dynamically changing cell culture conditions without losing track of individual cells. The dynamic, valve-controlled design permits targeted seeding of cells in up to 48 independently controlled culture chambers, each providing sufficient space for long-term cell colony expansion. Diffusion-based media exchange occurs rapidly and minimizes displacement of cells and eliminates shear stress. The chip was successfully tested with long-term culture and tracking of primary hematopoietic stem and progenitor cells, and murine embryonic stem cells. This system will have important applications to analyze dynamic signaling inputs controlling fate choices.


Subject(s)
Cell Tracking/methods , Hematopoietic Stem Cells/cytology , Lab-On-A-Chip Devices , Mouse Embryonic Stem Cells/cytology , Single-Cell Analysis/methods , Animals , Cell Adhesion , Cells, Cultured , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/metabolism , Proof of Concept Study , Reproducibility of Results , Time-Lapse Imaging
8.
PLoS One ; 13(6): e0198330, 2018.
Article in English | MEDLINE | ID: mdl-29879160

ABSTRACT

Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controllability of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.


Subject(s)
Chemokine CCL19/pharmacology , Dendritic Cells/cytology , Microfluidics/instrumentation , Single-Cell Analysis/methods , Animals , Cell Movement/drug effects , Cells, Cultured , Chemotaxis , Dendritic Cells/drug effects , Lab-On-A-Chip Devices , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...