Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 209, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577900

ABSTRACT

Grazing by wild and domesticated grazers occurs within many terrestrial ecosystems worldwide, with positive and negative impacts on biodiversity. Management of grazed lands in support of biological conservation could benefit from a compiled dataset of animal biodiversity within and adjacent to grazed sites. In this database, we have assembled data from the peer-reviewed literature that included all forms of grazing, co-occurring species, and site information. We reviewed 3,489 published articles and found 245 studies in 41 countries that surveyed animal biodiversity co-occurring with grazers. We extracted 16,105 observations of animal surveys for over 1,200 species in all terrestrial ecosystems and on all continents except Antarctica. We then compiled 28 different grazing variables that focus on management systems, assemblages of grazer species, ecosystem characteristics, and survey type. Our database provides the most comprehensive summary of animal biodiversity patterns that co-occur with wild and domesticated grazers. This database could be used in future conservation initiatives and grazing management to enhance the prolonged maintenance of ecosystems and ecosystem services.


Subject(s)
Biodiversity , Databases, Factual , Ecosystem , Animals , Antarctic Regions
2.
AoB Plants ; 13(2): plab011, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33889378

ABSTRACT

Ecosystems are spatially heterogenous in plant community composition and function. Shrub occurrence in grasslands is a visually striking example of this, and much research has been conducted to understand the functional implications of this pattern. Within savannah ecosystems, the presence of tree and shrub overstories can have significant impacts on the understory herbaceous community. The exact outcomes, however, are likely a function of the spatial arrangement and traits of the overstory species. Here we test whether there are functional linkages between the spatial patterning of a native shrub and the standing biomass, community composition, and overall nutrient cycling of a neighbouring grassland understory communities within the Aspen Parkland of central Alberta, Canada. In a paired grassland-shrub stand study, we found the native shrub, Elaeagnus commutata, has relatively few stand-level impacts on the composition and standing biomass of the ecosystem. One factor contributing to these limited effects may be the overdispersion of shrub stems at fine spatial scales, preventing areas of deep shade. When we looked across a shrub density gradient and incorporated shrub architecture into our analyses, we found these shrub traits had significant associations with species abundance and root biomass in the understory community. These results suggest that stem dispersion patterns, as well as local stand architecture, are influential in determining how shrubs may affect their herbaceous plant understory. Thus, it is important to incorporate shrub spatial and architectural traits when assessing shrub-understory interactions.

3.
Ecol Lett ; 23(8): 1298-1309, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32369874

ABSTRACT

Anthropogenic disturbance has generated a significant loss of biodiversity worldwide and grazing by domestic herbivores is a contributing disturbance. Although the effects of grazing on plants are commonly explored, here we address the potential multi-trophic effects on animal biodiversity (e.g. herbivores, pollinators and predators). We conducted a meta-analysis on 109 independent studies that tested the response of animals or plants to livestock grazing relative to livestock excluded. Across all animals, livestock exclusion increased abundance and diversity, but these effects were greatest for trophic levels directly dependent on plants, such as herbivores and pollinators. Detritivores were the only trophic level whose abundance decreased with livestock exclusion. We also found that the number of years since livestock was excluded influenced the community and that the effects of grazer exclusion on animal diversity were strongest in temperate climates. These findings synthesise the effects of livestock grazing beyond plants and demonstrate the indirect impacts of livestock grazing on multiple trophic levels in the animal community. We identified the potentially long-term impacts that livestock grazing can have on lower trophic levels and consequences for biological conservation. We also highlight the potentially inevitable cost to global biodiversity from livestock grazing that must be balanced against socio-economic benefits.


Subject(s)
Biodiversity , Livestock , Animals , Ecosystem , Herbivory , Nutritional Status , Plants
4.
AoB Plants ; 10(4): ply044, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30090221

ABSTRACT

Although the negative effects of root herbivores on plant fitness are expected to be similar to those of above-ground herbivores, the study of below-ground plant defences is limited compared to the rich literature on above-ground defences. Current theory predicts that concentrations of defensive chemicals above- and below-ground should be correlated, as the evolutionary drivers that shape plant defence are similar across the whole plant. We conducted a field study to measure root condensed tannin concentrations in Populus tremuloides, and determine how they related to leaf condensed tannin concentrations, tree position within the stand (edge vs. interior), tree size, and time of year. Overall, root tannin concentrations were substantially lower than leaf tannin concentrations. At individual sampling periods, root and leaf tannin concentrations were uncorrelated with each other, and did not vary with stand position or size. Across the growing season both root and leaf tannin concentrations did show similar trends, with both highest in the early summer, and declining through mid-summer and fall. These results suggest that the mechanisms that influence leaf and root tannin levels in aspen are independent within individual stems, possibly due to different evolutionary pressures experienced by the different tissue types or in response to localized (roots vs. foliage) stressors. However, across individual stems, the similar patterns in chemical defence over time, independent of plant size or stand position indicate that larger scale processes can have consistent effects across individuals within a population, such as the relative investment in defence of tissues in the spring versus the fall. Overall, we conclude that using theories based on above-ground defence to predict below-ground defences may not be possible without further studies examining below-ground defence.

SELECTION OF CITATIONS
SEARCH DETAIL
...