Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Med ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38593812

ABSTRACT

BACKGROUND: The treatment of melanoma, the deadliest form of skin cancer, has greatly benefited from immunotherapy. However, many patients do not show a durable response, which is only partially explained by known resistance mechanisms. METHODS: We performed single-cell RNA sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of 22 checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI treatment, and their response was assessed. FINDINGS: CPI responders showed high levels of classical monocytes in peripheral blood, which preferentially transitioned toward CXCL9-expressing macrophages in tumors. Trajectories of tumor-infiltrating CD8+ T cells diverged at the level of effector memory/stem-like T cells, with non-responder cells progressing into a state characterized by cellular stress and apoptosis-related gene expression. Consistently, predicted non-responder-enriched myeloid-T/natural killer cell interactions were primarily immunosuppressive, while responder-enriched interactions were supportive of T cell priming and effector function. CONCLUSIONS: Our study illustrates that the tumor immune microenvironment prior to CPI treatment can be indicative of response. In perspective, modulating the myeloid and/or effector cell compartment by altering the described cell interactions and transitions could improve immunotherapy response. FUNDING: This research was funded by Roche Pharma Research and Early Development.

2.
Elife ; 122023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127790

ABSTRACT

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort towards novel therapeutic strategies to combat this fatal disease.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , CD8-Positive T-Lymphocytes , Macrophages/pathology , Glioma/genetics , Leukocytes/pathology , Tumor Microenvironment/genetics , Brain Neoplasms/pathology
3.
Int J Mol Sci ; 21(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096928

ABSTRACT

Most gliomas are associated with a fatal prognosis and remain incurable because of their infiltrative growth. Consequently, the addition of immunotherapy to conventional therapy may improve patient outcomes. Here, we analyzed T-cell infiltration and, therefore, a major prerequisite for successful immunotherapy in a series of primary (n = 78) and recurrent (n = 66) isocitrate dehydrogenase (IDH)-mutant glioma and their changes following treatment with radio- and/or chemotherapy. After multicolor immunofluorescence staining, T cells were counted in entire tumor sections using a software-based setup. Newly diagnosed diffuse IDH-mutant gliomas displayed a median T-cell infiltration of 0.99 T cells/mm2 (range: 0-48.97 CD3+ T cells/mm2), which was about two-fold increased for CD3+, helper, and cytotoxic T cells in recurrent glioma. Furthermore, T-cell infiltration of recurrent tumors was associated with the type of adjuvant treatment of the primary tumor. Interestingly, only glioma patients solely receiving radiotherapy presented consistently with increased T-cell infiltration in their recurrent tumors. This was confirmed in a subset of 27 matched pairs. In conclusion, differences in the T-cell infiltration of primary and recurrent gliomas were demonstrated, and evidence was provided for a beneficial long-term effect on T-cell infiltration upon treatment with radiotherapy.


Subject(s)
Brain Neoplasms/radiotherapy , Glioma/radiotherapy , Lymphocytes, Tumor-Infiltrating/radiation effects , Adult , Aged , Aged, 80 and over , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Female , Glioma/genetics , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Lymphocytes, Tumor-Infiltrating/pathology , Male , Matched-Pair Analysis , Middle Aged , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Cytotoxic/radiation effects , Tumor Microenvironment/radiation effects , Young Adult
4.
Clin Cancer Res ; 26(9): 2231-2243, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31953311

ABSTRACT

PURPOSE: To provide a better understanding of the interplay between the immune system and brain metastases to advance therapeutic options for this life-threatening disease. EXPERIMENTAL DESIGN: Tumor-infiltrating lymphocytes (TIL) were quantified by semiautomated whole-slide analysis in brain metastases from 81 lung adenocarcinomas. Multi-color staining enabled phenotyping of TILs (CD3, CD8, and FOXP3) on a single-cell resolution. Molecular determinants of the extent of TILs in brain metastases were analyzed by transcriptomics in a subset of 63 patients. Findings in lung adenocarcinoma brain metastases were related to published multi-omic primary lung adenocarcinoma The Cancer Genome Atlas data (n = 230) and single-cell RNA-sequencing (scRNA-seq) data (n = 52,698). RESULTS: TIL numbers within tumor islands was an independent prognostic marker in patients with lung adenocarcinoma brain metastases. Comparative transcriptomics revealed that expression of three surfactant metabolism-related genes (SFTPA1, SFTPB, and NAPSA) was closely associated with TIL numbers. Their expression was not only prognostic in brain metastasis but also in primary lung adenocarcinoma. Correlation with scRNA-seq data revealed that brain metastases with high expression of surfactant genes might originate from tumor cells resembling alveolar type 2 cells. Methylome-based estimation of immune cell fractions in primary lung adenocarcinoma confirmed a positive association between lymphocyte infiltration and surfactant expression. Tumors with a high surfactant expression displayed a transcriptomic profile of an inflammatory microenvironment. CONCLUSIONS: The expression of surfactant metabolism-related genes (SFTPA1, SFTPB, and NAPSA) defines an inflamed subtype of lung adenocarcinoma brain metastases characterized by high abundance of TILs in close vicinity to tumor cells, a prolonged survival, and a tumor microenvironment which might be more accessible to immunotherapeutic approaches.


Subject(s)
Adenocarcinoma of Lung/mortality , Aspartic Acid Endopeptidases/metabolism , Biomarkers, Tumor/metabolism , Brain Neoplasms/mortality , Inflammation/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Pulmonary Surfactant-Associated Protein A/metabolism , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adult , Aged , Aged, 80 and over , Aspartic Acid Endopeptidases/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , CD3 Complex/immunology , CD3 Complex/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Databases, Genetic/statistics & numerical data , Female , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Prognosis , Pulmonary Surfactant-Associated Protein A/genetics , Survival Rate , Tumor Microenvironment/immunology
5.
Cancer Immunol Res ; 7(12): 1998-2012, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31672785

ABSTRACT

Endogenous antitumor effector T-cell responses and immune-suppressive regulatory T cells (Treg) critically influence the prognosis of patients with cancer, yet many of the mechanisms of how this occurs remain unresolved. On the basis of an analysis of the function, antigen specificity, and distribution of tumor antigen-reactive T cells and Tregs in patients with breast cancer and transgenic mouse tumor models, we showed that tumor-specific Tregs were selectively activated in the bone marrow (BM) and egressed into the peripheral blood. The BM was constantly depleted of tumor-specific Tregs and was instead a site of increased induction and activity of tumor-reactive effector/memory T cells. Treg egress from the BM was associated with activation-induced expression of peripheral homing receptors such as CCR2. Because breast cancer tissues express the CCR2 ligand CCL2, the activation and egress of tumor antigen-specific Tregs in the BM resulted in the accumulation of Tregs in breast tumor tissue. Such immune compartmentalization and redistribution of T-cell subpopulations between the BM and peripheral tissues were achieved by vaccination with adenoviral vector-encoded TRP-2 tumor antigen in a RET transgenic mouse model of spontaneous malignant melanoma. Thus, the BM simultaneously represented a source of tumor-infiltrating Tregs and a site for the induction of endogenous tumor-specific effector T-cell responses, suggesting that both antitumor immunity and local immune suppression are orchestrated in the BM.


Subject(s)
Breast Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, Neoplasm/immunology , Bone Marrow/immunology , Cell Line, Tumor , Female , Humans , Melanoma/immunology , Mice, Transgenic , Proto-Oncogene Proteins c-ret/genetics
6.
Cell Stem Cell ; 25(2): 241-257.e8, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31303549

ABSTRACT

Brain tumor stem cells (BTSCs) are a chemoresistant population that can drive tumor growth and relapse, but the lack of BTSC-specific markers prevents selective targeting that spares resident stem cells. Through a ribosome-profiling analysis of mouse neural stem cells (NSCs) and BTSCs, we find glycerol-3-phosphate dehydrogenase 1 (GPD1) expression specifically in BTSCs and not in NSCs. GPD1 expression is present in the dormant BTSC population, which is enriched at tumor borders and drives tumor relapse after chemotherapy. GPD1 inhibition prolongs survival in mouse models of glioblastoma in part through altering cellular metabolism and protein translation, compromising BTSC maintenance. Metabolomic and lipidomic analyses confirm that GPD1+ BTSCs have a profile distinct from that of NSCs, which is dependent on GPD1 expression. Similar GPD1 expression patterns and prognostic associations are observed in human gliomas. This study provides an attractive therapeutic target for treating brain tumors and new insights into mechanisms regulating BTSC dormancy.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glioma/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Neoplastic Stem Cells/physiology , Neural Stem Cells/physiology , Neurons/physiology , Animals , Biomarkers, Tumor/metabolism , Brain/pathology , Brain Neoplasms/pathology , Disease Models, Animal , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioma/pathology , Glycerolphosphate Dehydrogenase/genetics , Humans , Metabolome , Mice , Recurrence , Tumor Cells, Cultured
7.
Clin Cancer Res ; 25(17): 5260-5270, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31227506

ABSTRACT

PURPOSE: Clinically aggressive meningiomas (MGMs) are rare but treatment-resistant tumors in need for more effective therapies. Because tumor-infiltrating T lymphocytes (TILs) are essential for successful immunotherapy, we assessed TIL numbers and their activation status in primary (p-) and recurrent (r-) meningiomas and their impact on survival. EXPERIMENTAL DESIGN: Presence of TILs was analyzed in 202 clinically well-annotated cases (n = 123 pMGMs and n = 79 rMGMs) focusing on higher-grade meningiomas [n = 97 World Health Organization (WHO) °II, n = 62 WHO°III]. TILs were quantified by a semiautomated analysis on whole-tissue sections stained by multicolor immunofluorescence for CD3, CD8, FOXP3, and programmed cell death protein 1 (PD-1). RESULTS: Median T-cell infiltration accounted for 0.59% TILs per total cell count. Although there were no significant WHO°-dependent changes regarding helper (CD3+CD8-FOXP3-) and cytotoxic (CD3+CD8+FOXP3-) TILs in pMGMs, higher number of cytotoxic TILs were associated with an improved progression-free survival (PFS) independent of prognostic confounders. rMGMs were characterized by lower numbers of TILs in general, helper, and cytotoxic TILs. The additional analysis of their activation status revealed that a proportion of PD-1+CD8+ TILs within the TIL population was significantly decreased with higher WHO grade and in rMGMs. Furthermore, lower proportions of PD-1+CD8+ TILs were associated with inferior PFS in multivariate analyses, arguing for PD-1 as activation rather than exhaustion marker. CONCLUSIONS: We identified higher numbers of CD3+CD8+FOXP3- TILs and proportions of PD-1-expressing CD3+CD8+FOXP3- TILs as novel biomarkers for better survival. These findings might facilitate the selection of patients who may benefit from immunotherapy and argue in favor of an intervention in primary rather than recurrent tumors.


Subject(s)
Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Meningeal Neoplasms/immunology , Meningioma/immunology , Neoplasm Recurrence, Local/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/immunology , Female , Humans , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/pathology , Male , Meningeal Neoplasms/pathology , Meningeal Neoplasms/therapy , Meningioma/pathology , Meningioma/therapy , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Prognosis , Survival Rate , T-Lymphocytes, Cytotoxic/pathology , Young Adult
8.
Cancers (Basel) ; 11(4)2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30991738

ABSTRACT

Kinesins play an important role in many physiological functions including intracellular vesicle transport and mitosis. The emerging role of kinesins in different cancers led us to investigate the expression and functional role of kinesins in meningioma. Therefore, we re-analyzed our previous microarray dataset of benign, atypical, and anaplastic meningiomas (n = 62) and got evidence for differential expression of five kinesins (KIFC1, KIF4A, KIF11, KIF14 and KIF20A). Further validation in an extended study sample (n = 208) revealed a significant upregulation of these genes in WHO°I to °III meningiomas (WHO°I n = 61, WHO°II n = 88, and WHO°III n = 59), which was most pronounced in clinically more aggressive tumors of the same WHO grade. Immunohistochemical staining confirmed a WHO grade-associated upregulated protein expression in meningioma tissues. Furthermore, high mRNA expression levels of KIFC1, KIF11, KIF14 and KIF20A were associated with shorter progression-free survival. On a functional level, knockdown of kinesins in Ben-Men-1 cells and in the newly established anaplastic meningioma cell line NCH93 resulted in a significantly inhibited tumor cell proliferation upon siRNA-mediated downregulation of KIF11 in both cell lines by up to 95% and 71%, respectively. Taken together, in this study we were able to identify the prognostic and functional role of several kinesin family members of which KIF11 exhibits the most promising properties as a novel prognostic marker and therapeutic target, which may offer new treatment options for aggressive meningiomas.

9.
Bioinformatics ; 34(19): 3417-3418, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29718102

ABSTRACT

Summary: Comparative metabolomics comes of age through commercial vendors offering metabolomics for translational researchers outside the mass spectrometry field. The MetaboDiff packages aims to provide a low-level entry to differential metabolomic analysis with R by starting off with the table of metabolite measurements. As a key functionality, MetaboDiffs offers the exploration of sample traits in a data-derived metabolic correlation network. Availability and implementation: The MetaboDiff R package is platform-independent, available at http://github.com/andreasmock/MetaboDiff/ and released under the MIT licence. The package documentation comprises a step-by-step markdown tutorial. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Metabolomics , Software , Computational Biology , Mass Spectrometry , Metabolic Networks and Pathways
10.
Clin Cancer Res ; 24(12): 2951-2962, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29563135

ABSTRACT

Purpose: Successful immunotherapies for IDHmut gliomas require better knowledge of T-cell target antigens. Here, we elucidated their antigen repertoire recognized by spontaneous T-cell responses using an unbiased proteomic approach.Experimental Design: Protein fractionations of tissue lysates from IDHmut gliomas (n = 4) were performed. Fractions were tested by IFNγ ELISpot assay for recognition through patients' T cells. Proteins of immunogenic fractions were identified by mass spectrometry and validated by in silico-predicted synthetic long peptides in patients of origin, additional IDHmut glioma patients (n = 16), and healthy donors (n = 13). mRNA and protein expression of immunogenic antigens was analyzed in tumor tissues and IDHmut glioma stem-like cells (GSC). HLA-A*02-restricted T-cell epitopes were functionally determined by short peptides and numbers of antigen-specific T cells by HLA-peptide tetramer analysis.Results: A total of 2,897 proteins were identified in immunogenic tumor fractions. Based on a thorough filter process, 79 proteins were selected as potential T-cell antigens. Twenty-six of these were recognized by the patients' T cells, and five of them (CRKII, CFL1, CNTN1, NME2, and TKT) in up to 56% unrelated IDHmut glioma patients. Most immunogenic tumor-associated antigens (TAA) were expressed in IDHmut gliomas and GSCs, while being almost absent in normal brain tissues. Finally, we identified HLA-A*02-restricted epitopes for CRKII, NME2, and TKT that were recognized by up to 2.82% of antigen-specific peripheral cytotoxic T cells in IDHmut glioma patients.Conclusions: By analyzing the repertoire of T-cell target antigens in IDHmut glioma patients, we identified five novel immunogenic TAAs and confirmed their expression on IDHmut tumors and GSCs. Clin Cancer Res; 24(12); 2951-62. ©2018 AACR.


Subject(s)
Biomarkers, Tumor , Glioma/genetics , Glioma/metabolism , Isocitrate Dehydrogenase/genetics , Mutation , T-Lymphocytes/metabolism , Antigens, Neoplasm/immunology , Cell Line, Tumor , Chromatography, Liquid , Cofilin 1/genetics , Cofilin 1/metabolism , Contactin 1/genetics , Contactin 1/metabolism , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epitope Mapping , Glioma/immunology , Humans , Immunohistochemistry , Isocitrate Dehydrogenase/metabolism , NM23 Nucleoside Diphosphate Kinases/genetics , NM23 Nucleoside Diphosphate Kinases/metabolism , Proteome , Proteomics/methods , Proto-Oncogene Proteins c-crk/genetics , Proto-Oncogene Proteins c-crk/metabolism , T-Lymphocytes/immunology , Tandem Mass Spectrometry
11.
Int J Mol Sci ; 19(2)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29389898

ABSTRACT

As a substantial part of the brain tumor microenvironment (TME), glioma-associated microglia/macrophages (GAMs) have an emerging role in tumor progression and in controlling anti-tumor immune responses. We review challenges and improvements of cell models and highlight the contribution of this highly plastic cell population to an immunosuppressive TME, besides their well-known functional role regarding glioma cell invasion and angiogenesis. Finally, we summarize first therapeutic interventions to target GAMs and their effect on the immunobiology of gliomas, focusing on their interaction with T cells.


Subject(s)
Brain Neoplasms/immunology , Glioma/immunology , Macrophages/immunology , Microglia/immunology , Tumor Microenvironment/immunology , Animals , Brain/immunology , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cytokines/immunology , Cytokines/metabolism , Glioma/metabolism , Glioma/pathology , Humans , Macrophages/pathology , Microglia/pathology , Models, Immunological
12.
Acta Neuropathol ; 134(2): 297-316, 2017 08.
Article in English | MEDLINE | ID: mdl-28332095

ABSTRACT

Glioblastoma (GBM) is a highly aggressive brain tumor and still remains incurable. Among others, an immature subpopulation of self-renewing and therapy-resistant tumor cells-often referred to as glioblastoma stem-like cells (GSCs)-has been shown to contribute to disease recurrence. To target these cells personalized immunotherapy has gained a lot of interest, e.g. by reactivating pre-existing anti-tumor immune responses against GSC antigens. To identify T cell targets commonly presented by GSCs and their differentiated counterpart, we used a proteomics-based separation of GSC proteins in combination with a T cell activation assay. Altogether, 713 proteins were identified by LC-ESI-MS/MS mass spectrometry. After a thorough filtering process, 32 proteins were chosen for further analyses. Immunogenicity of corresponding peptides was tested ex vivo. A considerable number of these antigens induced T cell responses in GBM patients but not in healthy donors. Moreover, most of them were overexpressed in primary GBM and also highly expressed in recurrent GBM tissues. Interestingly, expression of the most frequent T cell target antigens could also be confirmed in quiescent, slow-cycling GSCs isolated in high purity by the DEPArray technology. Finally, for a subset of these T cell target antigens, an association between expression levels and higher T cell infiltration as well as an increased expression of positive immune modulators was observed. In summary, we identified novel immunogenic proteins, which frequently induce tumor-specific T cell responses in GBM patients and were also detected in vitro in therapy-resistant quiescent, slow-cycling GSCs. Stable expression of these T cell targets in primary and recurrent GBM support their suitability for future clinical use.


Subject(s)
Antigens, Neoplasm/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Proteomics , T-Lymphocyte Subsets/pathology , Animals , Annexin A1/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Carcinogenicity Tests , Carrier Proteins/metabolism , Cells, Cultured , Chaperonin 60/metabolism , Cystatin A/metabolism , Disease Models, Animal , Epitope Mapping , Female , Humans , Interferon-gamma/metabolism , Ki-67 Antigen/metabolism , Male , Mice , Microfilament Proteins/metabolism , Mitochondrial Proteins/metabolism , Neoplastic Stem Cells/pathology
13.
Cancer Immunol Immunother ; 66(5): 593-603, 2017 May.
Article in English | MEDLINE | ID: mdl-28224210

ABSTRACT

Regulatory T cells (Treg) hamper anti-tumor T-cell responses resulting in reduced survival and failure of cancer immunotherapy. Among lymphoid organs, the bone marrow (BM) is a major site of Treg residence and recirculation. However, the process governing the emigration of Treg from BM into the circulation remains elusive. We here show that breast cancer patients harbour reduced Treg frequencies in the BM as compared to healthy individuals or the blood. This was particularly the case for tumor antigen-specific Treg which were quantified by MHCII tumor peptide loaded tetramers. We further demonstrate that decreased Treg distribution in the BM correlated with increased Treg redistribution to tumor tissue, suggesting that TCR triggering induces a translocation of Treg from the BM into tumor tissue. Sphingosine-1-phosphate receptor 1 (S1P1)-which is known to mediate exit of immune cells from lymphoid organs was selectively expressed by tumor antigen-specific BM Treg. S1P1 expression could be induced in Treg by BM-resident antigen-presenting cells (BMAPCs) in conjunction with TCR stimulation, but not by TCR stimulation or BMAPCs alone and triggered the migration of Treg but not conventional T cells (Tcon) to its ligand Sphingosine-1-phosphate (S1P). Interestingly, we detected marked S1P gradients between PB and BM in breast cancer patients but not in healthy individuals. Taken together, our data suggest a role for S1P1 in mediating the selective mobilization of tumor specific Treg from the BM of breast cancer patients and their translocation into tumor tissue.


Subject(s)
Bone Marrow Cells/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Receptors, Lysosphingolipid/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Female , Humans , Middle Aged , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...