Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 37(14): 2437-2441, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35187999

ABSTRACT

Virgin Olive Oil (VOO) shelf life is determined by the varietal-specific chemical composition and principally by the of phenolic composition. The aim of this study was to investigate the changes in fatty acid profile, phenolic composition, and quality parameters of nine Italian monovarietal VOOs obtained under the same pedoclimatic, agronomic and technological conditions and stored for 12 months at 15 °C in the dark. The varieties with medium-high concentrations of secoiridoids and balanced values between the individual molecules were those with the highest stability. Orthogonal Projections to Latent Structures (OPLS) regression revealed that oleuropein derivatives and phenolic alcohols had the highest antioxidant activity. OPLS discriminant analysis separated well fresh and stored oils. PV, K270, tyrosol, hydroxytyrosol, and oxidated oleacein were the most effective indicators of VOO ageing. Oleacein and oleocanthal decreased after storage, phenolic alcohols, oleacein and ligstroside aglycon increased.


Subject(s)
Antioxidants , Olea , Olive Oil/analysis , Antioxidants/chemistry , Iridoids/chemistry , Alcohols , Plant Oils/chemistry , Olea/chemistry
2.
Microorganisms ; 8(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936728

ABSTRACT

Bacterial diversity of 15 extra virgin olive oils, obtained from different Italian varieties, including Frantoio, Coratina, Bosana, and Semidana, was analyzed in this study. All bacterial isolates were genotyped using RAPD and REP-PCR method and grouped by means of cluster analyses. Sequencing of 16S rDNA of 51 isolates, representative of 36 clusters, led to the identification of Bacillus spp., Brevibacillus spp., Micrococcus spp., Staphylococcus spp., Pantoea spp., Kocuria spp., Lysinbacillus spp., and Lactobacillus spp., most of which reported for first time in olive oils. Phenotypic characterization of the 51 isolates, some of which ascribed to potentially probiotic species, indicate that two of them have beta-glucosidase activity while 37% present lipolytic activity. Preliminary evaluation of probiotic potential indicates that 31% of the isolates show biofilm formation ability, 29% acidic pH resistance, and 25% bile salt resistance. Finally, 29% of the isolates were sensitive to antibiotics while the remaining 71%, that include bacterial species well-recognized for their ability to disseminate resistance genes in the environment, showed a variable pattern of antibiotic resistance. The results obtained underline that microbial diversity of extra virgin olive oils represents an unexpected sink of microbial diversity and poses safety issues on the possible biotechnological exploitation of this microbial biodiversity.

3.
Food Chem ; 300: 125243, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31357015

ABSTRACT

Fatty acids, phenolic compounds, and tocopherols of Coratina, Bosana, Semidana, and Tonda di Cagliari virgin olive oils, were measured over a 45-day harvest period. Phenolic composition was the primary factor distinguishing Bosana, Tonda di Cagliari, and Semidana, whereas fatty acids differentiated Coratina and the other cultivars. Harvest period principally influenced oleacein, oleocanthal, oleuropein and ligstroside aglycones, and flavonoids. High phenolic content was observed for Coratina (1039-688 mg/kg) and Bosana (788-592 mg/kg). A drastic decrease in phenolic content was observed in Semidana (529-134 mg/kg) and Tonda di Cagliari (507-142 mg/kg) during the harvest period. These two cultivars also had low MUFA/PUFA (6.0-4.0 and 4.9-3.2 respectively), suggesting that these varieties should be harvested earlier in the season. These results provide information to producers for improved management of the harvesting process, which is strongly affected by varietal factors.


Subject(s)
Food Analysis/methods , Olive Oil/analysis , Olive Oil/chemistry , Agriculture , Aldehydes/analysis , Cyclopentane Monoterpenes , Fatty Acids/analysis , Flavonoids/analysis , Food Analysis/statistics & numerical data , Glucosides/analysis , Iridoid Glucosides , Iridoids/analysis , Italy , Olea/chemistry , Phenols/analysis , Pyrans/analysis , Species Specificity , Tocopherols/analysis
4.
Sci Rep ; 8(1): 16946, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446680

ABSTRACT

Land cover change analyses are common and, especially in the absence of explanatory variables, they are mainly carried out by employing qualitative methods such as transition matrices or raster operations. These methods do not provide any estimation of the statistical significance of the changes, or the uncertainty of the model and data, and are usually limited in supporting explicit biological/ecological interpretation of the processes determining the changes. Here we show how the original nearest-neighbour contingency table, proposed by Dixon to evaluate spatial segregation, has been extended to the temporal domain to map the intensity, statistical significance and uncertainty of land cover changes. This index was then employed to quantify the changes in cork oak forest cover between 1998 and 2016 in the Sa Serra region of Sardinia (Italy). The method showed that most statistically significant cork oak losses were concentrated in the centre of Sa Serra and characterised by high intensity. A spatial binomial-logit generalised linear model estimated the probability of changes occurring in the area but not the type of change. We show how the spatio-temporal Dixon's index can be an attractive alternative to other land cover change analysis methods, since it provides a robust statistical framework and facilitates direct biological/ecological interpretation.


Subject(s)
Agriculture/methods , Forests , Quercus/growth & development , Spatio-Temporal Analysis , Algorithms , Conservation of Natural Resources/methods , Ecosystem , Geography , Italy , Models, Theoretical
5.
Food Microbiol ; 70: 65-75, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29173641

ABSTRACT

The olives are rich in microorganisms that, during the extraction process may persist in the oils and can influence their physicochemical and sensory characteristics. In this work, and for the first time, we isolated and identified microbial species, yeast and bacteria, present during the production process in four Sardinian (Italy) oleic ecosystems. Among these varieties, we found that Nera di Gonnos was associated to the highest microbial biodiversity, which was followed by Bosana, Nocellara del Belice and Semidana. Among the different microbial species isolated, some are specific of olive ecological niches, such as Cryptococcus spp and Serratia spp; and others to olive oils such as Candida spp and Saccharomyces. Some other species identified in this work were not found before in oleic ecosystems. The enzymatic analyses of yeast and bacteria showed that they have good ß-glucosidase activity and yeast also showed good ß-glucanase activity. The majority of bacteria presented lipolytic and catalase activities while in yeast were species-specific. Interestingly, yeast and bacteria isolates presented a high resistance to bile acid, and about 65% of the yeast were able to resist at pH 2.5 for 2 h. Finally, bacteria showed no biofilm activity compared to yeast.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Olea/microbiology , Olive Oil/analysis , Yeasts/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Ecosystem , Fermentation , Fruit/chemistry , Fruit/microbiology , Italy , Olea/chemistry , Yeasts/classification , Yeasts/genetics , Yeasts/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...