Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2400522, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989725

ABSTRACT

In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.

2.
Biomater Adv ; 134: 112574, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35525741

ABSTRACT

In the past few years researchers have witnessed a paradigm shift in the development of biomaterials for drug discovery, tissue engineering, and regenerative medicine. After the great advances resulting from the transition of the 2D to the 3D, the new focus has been to increase the clinical relevance of such systems, as well as avoid the use of animals, by developing platforms that better replicate the human physiology in vitro. In this sense, we envisage the use of human matrices extracted from ethically sourced and readily available tissues as an optimal and promising alternative to currently used approaches. Hereupon, we report for the first time the chemical modification of human ECM proteins from the amniotic membrane (AM) with photoresponsive groups to produce bioinks and hydrogel precursors to engineer customizable platforms that are representative of native tissues and capable of supporting long-term cell culture. Our results demonstrated an efficient decellularization, liquefaction and functionalization of AM-derived ECM with methacryloyl domains (AMMA), with production of stable and versatile hydrogels. Mechanical characterization evidenced an increased compression strength as a function of methacrylation degree and decellularized ECM concentration. Three-dimensional (3D) stem cell culture in the AMMA hydrogels resulted in viable and proliferative cells up to 7 days; moreover, the mouldable character of the hydrogel precursors permits the processing of patterned hydrogel constructs allowing the control over cellular alignment and elongation, or microgels with highly tunable shape.


Subject(s)
Amnion , Extracellular Matrix , Animals , Cell Culture Techniques , Extracellular Matrix/chemistry , Humans , Hydrogels/analysis , Tissue Engineering/methods
3.
Acta Biomater ; 110: 1-14, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32418650

ABSTRACT

Perinatal tissues are an abundant source of human extracellular matrix proteins, growth factors and stem cells with proved potential use in a wide range of therapeutic applications. Due to their placental origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Additionally, as a temporary organ, placenta is usually discarded as a medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. Although some of these tissues, such as the amniotic membrane and umbilical cord, have been used in clinical practices, most of them continue to be highly under explored. This review aims to outline the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM), as well as highlight how these solutions can be used to overcome the shortage of adequate scaffolds and cell sources that currently hampers the translation of TERM strategies towards clinical settings. STATEMENT OF SIGNIFICANCE: Stem cells and extracellular matrix derived from perinatal tissues such as placenta and umbilical cord, have drawn great attention for use in a wide variety of applications in the biomedical field. Due to their origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Also they are typically considered medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. This work aims to present and discuss the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM).


Subject(s)
Regenerative Medicine , Tissue Engineering , Amnion , Female , Humans , Pregnancy , Stem Cells , Umbilical Cord
SELECTION OF CITATIONS
SEARCH DETAIL
...